These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 31730652)

  • 1. On sorption hysteresis in wood: Separating hysteresis in cell wall water and capillary water in the full moisture range.
    Fredriksson M; Thybring EE
    PLoS One; 2019; 14(11):e0225111. PubMed ID: 31730652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How much water can wood cell walls hold? A triangulation approach to determine the maximum cell wall moisture content.
    Thybring EE; Digaitis R; Nord-Larsen T; Beck G; Fredriksson M
    PLoS One; 2020; 15(8):e0238319. PubMed ID: 32866174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hysteresis in swelling and in sorption of wood tissue.
    Patera A; Derome D; Griffa M; Carmeliet J
    J Struct Biol; 2013 Jun; 182(3):226-34. PubMed ID: 23523731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wood-water relationships and their role for wood susceptibility to fungal decay.
    Brischke C; Alfredsen G
    Appl Microbiol Biotechnol; 2020 May; 104(9):3781-3795. PubMed ID: 32144473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water vapor sorption behavior of bamboo pertaining to its hierarchical structure.
    Chen Q; Fang C; Wang G; Ma X; Luo J; Chen M; Dai C; Fei B
    Sci Rep; 2021 Jun; 11(1):12714. PubMed ID: 34135403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchrotron-based X-ray fluorescence microscopy in conjunction with nanoindentation to study molecular-scale interactions of phenol-formaldehyde in wood cell walls.
    Jakes JE; Hunt CG; Yelle DJ; Lorenz L; Hirth K; Gleber SC; Vogt S; Grigsby W; Frihart CR
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6584-9. PubMed ID: 25756624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An examination of the moisture sorption characteristics of commercial magnesium stearate.
    Swaminathan V; Kildsig DO
    AAPS PharmSciTech; 2001 Dec; 2(4):73. PubMed ID: 14727865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy.
    Rafsanjani A; Stiefel M; Jefimovs K; Mokso R; Derome D; Carmeliet J
    J R Soc Interface; 2014 Jun; 11(95):20140126. PubMed ID: 24671938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman micro-spectroscopy of two types of acetylated Norway spruce wood at controlled relative humidity.
    Ponzecchi A; Thybring EE; Digaitis R; Fredriksson M; Solsona SP; Thygesen LG
    Front Plant Sci; 2022; 13():986578. PubMed ID: 36147227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous change of wood mass and dimension caused by moisture dynamics.
    Nopens M; Riegler M; Hansmann C; Krause A
    Sci Rep; 2019 Jul; 9(1):10309. PubMed ID: 31311949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the origin of sorption hysteresis in cellulosic materials.
    Salmén L; Larsson PA
    Carbohydr Polym; 2018 Feb; 182():15-20. PubMed ID: 29279110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wood-Water Relations Affected by Anhydride and Formaldehyde Modification of Wood.
    Awais M; Altgen M; Belt T; Teräväinen V; Mäkelä M; Altgen D; Nopens M; Rautkari L
    ACS Omega; 2022 Nov; 7(46):42199-42207. PubMed ID: 36440166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers.
    Chen M; Coasne B; Guyer R; Derome D; Carmeliet J
    Nat Commun; 2018 Aug; 9(1):3507. PubMed ID: 30158573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of moisture sorption hysteresis in hard gelatin capsules, maize starch, and maize starch: drug powder mixtures.
    York P
    J Pharm Pharmacol; 1981 May; 33(5):269-73. PubMed ID: 6116772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Natural Aging on the Moisture Sorption Behaviour of Wooden Structural Components.
    Han L; Xi G; Dai W; Zhou Q; Sun S; Han X; Guo H
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic analysis of water vapor sorption isotherms and mechanical properties of selected paper-based food packaging materials.
    Rhim JW; Lee JH
    J Food Sci; 2009; 74(9):E502-11. PubMed ID: 20492112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Moisture Absorption and Thermal Properties of Hygroscopic Exothermic Fibers and Related Interactions with Water Molecules.
    Cui Y; Gao S; Zhang R; Cheng L; Yu J
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31947923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding wine sorption by oak wood: Modeling of wine uptake and characterization of volatile compounds retention.
    Coelho E; Domingues L; Teixeira JA; Oliveira JM; Tavares T
    Food Res Int; 2019 Feb; 116():249-257. PubMed ID: 30716943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Water in wood and its near infrared spectroscopic analysis].
    Jiang ZH; Huang AM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Aug; 26(8):1464-8. PubMed ID: 17058947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water vapor sorption properties of TEMPO oxidized and sulfuric acid treated cellulose nanocrystal films.
    Guo X; Liu L; Hu Y; Wu Y
    Carbohydr Polym; 2018 Oct; 197():524-530. PubMed ID: 30007643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.