These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 31730744)

  • 1. Patterns of intracolumnar size variation inform the heterochronic mechanisms underlying extreme body shape divergence in microcephalic sea snakes.
    Sherratt E; Sanders KL
    Evol Dev; 2020 May; 22(3):283-290. PubMed ID: 31730744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertebral evolution and ontogenetic allometry: The developmental basis of extreme body shape divergence in microcephalic sea snakes.
    Sherratt E; Coutts FJ; Rasmussen AR; Sanders KL
    Evol Dev; 2019 May; 21(3):135-144. PubMed ID: 30791197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterochronic Shifts Mediate Ecomorphological Convergence in Skull Shape of Microcephalic Sea Snakes.
    Sherratt E; Sanders KL; Watson A; Hutchinson MN; Lee MSY; Palci A
    Integr Comp Biol; 2019 Sep; 59(3):616-624. PubMed ID: 31065670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroevolution in axial morphospace: innovations accompanying the transition to marine environments in elapid snakes.
    Sherratt E; Nash-Hahn T; Nankivell JH; Rasmussen AR; Hampton PM; Sanders KL
    R Soc Open Sci; 2022 Dec; 9(12):221087. PubMed ID: 36569233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trophic specialization drives morphological evolution in sea snakes.
    Sherratt E; Rasmussen AR; Sanders KL
    R Soc Open Sci; 2018 Mar; 5(3):172141. PubMed ID: 29657807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sexual dimorphism in size and shape of the head in the sea snake Emydocephalus annulatus (Hydrophiinae, Elapidae).
    Shine R; Goiran C
    Sci Rep; 2021 Oct; 11(1):20026. PubMed ID: 34625587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the snake body form reveals homoplasy in amniote Hox gene function.
    Head JJ; Polly PD
    Nature; 2015 Apr; 520(7545):86-9. PubMed ID: 25539083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spine-bellied sea snake (Hydrophis curtus) venom shows greater skeletal myotoxicity compared with cardiac myotoxicity.
    Neale V; Smout MJ; Seymour JE
    Toxicon; 2018 Mar; 143():108-117. PubMed ID: 29355573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative analysis of the proteomes and biological activities of the venoms from two sea snakes, Hydrophis curtus and Hydrophis cyanocinctus, from Hainan, China.
    Wang B; Wang Q; Wang C; Wang B; Qiu L; Zou S; Zhang F; Liu G; Zhang L
    Toxicon; 2020 Nov; 187():35-46. PubMed ID: 32871160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elongation of the body in eels.
    Mehta RS; Ward AB; Alfaro ME; Wainwright PC
    Integr Comp Biol; 2010 Dec; 50(6):1091-105. PubMed ID: 21558261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae).
    Sanders KL; Lee MS; Mumpuni ; Bertozzi T; Rasmussen AR
    Mol Phylogenet Evol; 2013 Mar; 66(3):575-91. PubMed ID: 23026811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Venom of the Spine-Bellied Sea Snake (Hydrophis curtus): Proteome, Toxin Diversity and Intraspecific Variation.
    Neale V; Sotillo J; Seymour JE; Wilson D
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29231898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes.
    Keogh JS; Scott IA; Hayes C
    Evolution; 2005 Jan; 59(1):226-33. PubMed ID: 15792242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental mechanisms of macroevolutionary change in the tetrapod axis: A case study of Sauropterygia.
    Soul LC; Benson RBJ
    Evolution; 2017 May; 71(5):1164-1177. PubMed ID: 28240769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent rapid speciation and ecomorph divergence in Indo-Australian sea snakes.
    Sanders KL; Rasmussen AR; Mumpuni ; Elmberg J; de Silva A; Guinea ML; Lee MS
    Mol Ecol; 2013 May; 22(10):2742-59. PubMed ID: 23506038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation of somatic growth from segmentation drives gigantism in snakes.
    Head JJ; David Polly P
    Biol Lett; 2007 Jun; 3(3):296-8. PubMed ID: 17389216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiations.
    Sanders KL; Lee MS; Leys R; Foster R; Keogh JS
    J Evol Biol; 2008 May; 21(3):682-95. PubMed ID: 18384538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phototactic tails: Evolution and molecular basis of a novel sensory trait in sea snakes.
    Crowe-Riddell JM; Simões BF; Partridge JC; Hunt DM; Delean S; Schwerdt JG; Breen J; Ludington A; Gower DJ; Sanders KL
    Mol Ecol; 2019 Apr; 28(8):2013-2028. PubMed ID: 30767303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postmortem examination of Australian sea snakes ( Hydrophiinae): Anatomy and common pathologic conditions.
    Gillett AK; Ploeg R; Flint M; Mills PC
    J Vet Diagn Invest; 2017 Sep; 29(5):593-611. PubMed ID: 28545324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Genome of Shaw's Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment.
    Peng C; Ren JL; Deng C; Jiang D; Wang J; Qu J; Chang J; Yan C; Jiang K; Murphy RW; Wu DD; Li JT
    Mol Biol Evol; 2020 Jun; 37(6):1744-1760. PubMed ID: 32077944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.