These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31731039)

  • 1. Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor.
    Garrigues L; Maignien L; Lombard E; Singh J; Guillouet SE
    N Biotechnol; 2020 May; 56():16-20. PubMed ID: 31731039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production.
    Marc J; Grousseau E; Lombard E; Sinskey AJ; Gorret N; Guillouet SE
    Metab Eng; 2017 Jul; 42():74-84. PubMed ID: 28591561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isopropanol production with engineered Cupriavidus necator as bioproduction platform.
    Grousseau E; Lu J; Gorret N; Guillouet SE; Sinskey AJ
    Appl Microbiol Biotechnol; 2014 May; 98(9):4277-90. PubMed ID: 24604499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isopropanol production with reutilization of glucose-derived CO
    Subagyo DCH; Shimizu R; Orita I; Fukui T
    J Biosci Bioeng; 2021 Nov; 132(5):479-486. PubMed ID: 34507913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO
    Krieg T; Sydow A; Faust S; Huth I; Holtmann D
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1879-1882. PubMed ID: 29232490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products.
    Yu J
    World J Microbiol Biotechnol; 2018 Jun; 34(7):89. PubMed ID: 29886519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimizing the Lag Phase of Cupriavidus necator Growth under Autotrophic, Heterotrophic, and Mixotrophic Conditions.
    Amer A; Kim Y
    Appl Environ Microbiol; 2023 Feb; 89(2):e0200722. PubMed ID: 36719244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial production of poly-D-3-hydroxybutyrate from CO2.
    Ishizaki A; Tanaka K; Taga N
    Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):6-12. PubMed ID: 11693935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory.
    Li Z; Xiong B; Liu L; Li S; Xin X; Li Z; Zhang X; Bi C
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):783-790. PubMed ID: 30810844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains.
    Przybylski D; Rohwerder T; Dilßner C; Maskow T; Harms H; Müller RH
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2131-45. PubMed ID: 25503317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a Rhodopsin-Based Photo-Electrosynthetic System in Bacteria for CO
    Davison PA; Tu W; Xu J; Della Valle S; Thompson IP; Hunter CN; Huang WE
    ACS Synth Biol; 2022 Nov; 11(11):3805-3816. PubMed ID: 36264158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production.
    Crépin L; Lombard E; Guillouet SE
    Metab Eng; 2016 Sep; 37():92-101. PubMed ID: 27212691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effect of carbon dioxide on the fed-batch culture of Ralstonia eutropha: evaluation by CO2 pulse injection and autogenous CO2 methods.
    Shang L; Jiang M; Ryu CH; Chang HN; Cho SH; Lee JW
    Biotechnol Bioeng; 2003 Aug; 83(3):312-20. PubMed ID: 12783487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valorisation of CO2-rich off-gases to biopolymers through biotechnological process.
    Garcia-Gonzalez L; De Wever H
    FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 28961697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16.
    Heinrich D; Raberg M; Steinbüchel A
    Microb Biotechnol; 2018 Jul; 11(4):647-656. PubMed ID: 29027357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trehalose production by Cupriavidus necator from CO
    Löwe H; Beentjes M; Pflüger-Grau K; Kremling A
    Bioresour Technol; 2021 Jan; 319():124169. PubMed ID: 33254445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autotrophic biosynthesis of polyhydroxyalkanoate by Ralstonia eutropha from non-combustible gas mixture with low hydrogen content.
    Miyahara Y; Yamamoto M; Thorbecke R; Mizuno S; Tsuge T
    Biotechnol Lett; 2020 Sep; 42(9):1655-1662. PubMed ID: 32240453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of plasmid stabilization systems during heterologous isopropanol production in fed-batch bioreactor.
    Boy C; Lesage J; Alfenore S; Gorret N; Guillouet SE
    J Biotechnol; 2023 Mar; 366():25-34. PubMed ID: 36870479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-expression of an isopropanol synthetic operon and eGFP to monitor the robustness of Cupriavidus necator during isopropanol production.
    Boy C; Lesage J; Alfenore S; Guillouet SE; Gorret N
    Enzyme Microb Technol; 2022 Nov; 161():110114. PubMed ID: 36070644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reliance of glycerol utilization by Cupriavidus necator on CO
    Strittmatter CS; Eggers J; Biesgen V; Pauels I; Becker F; Steinbüchel A
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2541-2555. PubMed ID: 35325274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.