BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31731127)

  • 1. Risk-based decision making to evaluate pollutant reduction scenarios.
    Ahmadisharaf E; Benham BL
    Sci Total Environ; 2020 Feb; 702():135022. PubMed ID: 31731127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of bacteria and benthic total maximum daily loads: a case study, Linville Creek, Virginia.
    Benham BL; Brannan KM; Yagow G; Zeckoski RW; Dillaha TA; Mostaghimi S; Wynn JW
    J Environ Qual; 2005; 34(5):1860-72. PubMed ID: 16151238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economic total maximum daily load for watershed-based pollutant trading.
    Zaidi AZ; deMonsabert SM
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6308-24. PubMed ID: 25487554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Watershed model calibration framework developed using an influence coefficient algorithm and a genetic algorithm and analysis of pollutant discharge characteristics and load reduction in a TMDL planning area.
    Cho JH; Lee JH
    J Environ Manage; 2015 Nov; 163():2-10. PubMed ID: 26275596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of total maximum daily loads for bacteria impaired watershed using the comprehensive hydrology and water quality simulation model.
    Kim SM; Brannan KM; Zeckoski RW; Benham BL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(9):1077-89. PubMed ID: 24798906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking trading ratio with TMDL (total maximum daily load) allocation matrix and uncertainty analysis.
    Zhang HX
    Water Sci Technol; 2008; 58(1):103-8. PubMed ID: 18653943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of pollutant loads considering dam operation in Han River Basin by BASINS/Hydrological Simulation Program-FORTRAN.
    Jung KW; Yoon CG; Jang JH; Kong DS
    Water Sci Technol; 2008; 58(12):2329-38. PubMed ID: 19092211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir.
    Liang S; Jia H; Xu C; Xu T; Melching C
    Sci Total Environ; 2016 Aug; 560-561():44-54. PubMed ID: 27093122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability.
    Ghebremichael LT; Veith TL; Hamlett JM
    J Environ Manage; 2013 Jan; 114():381-94. PubMed ID: 23195139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.
    Qiu J; Shen Z; Wei G; Wang G; Xie H; Lv G
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6514-6531. PubMed ID: 29255977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fecal coliform modeling under two flow scenarios in St. Louis Bay of Mississippi.
    Liu Z; Hashim NB; Kingery WL; Huddleston DH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):282-91. PubMed ID: 20390869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffuse phosphorus models in the United States and europe: their usages, scales, and uncertainties.
    Radcliffe DE; Freer J; Schoumans O
    J Environ Qual; 2009; 38(5):1956-67. PubMed ID: 19704139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A screening-level modeling approach to estimate nitrogen loading and standard exceedance risk, with application to the Tippecanoe River watershed, Indiana.
    Yang G; Best EP; Whiteaker T; Teklitz A; Yeghiazarian L
    J Environ Manage; 2014 Mar; 135():1-10. PubMed ID: 24486566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment.
    Chen D; Dahlgren RA; Shen Y; Lu J
    Sci Total Environ; 2012 Jul; 430():59-67. PubMed ID: 22634550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation.
    Shen J; Zhao Y
    Water Res; 2010 Jan; 44(1):77-84. PubMed ID: 19781737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Estimation of nonpoint source pollutant loads and optimization of the best management practices (BMPs) in the Zhangweinan River basin].
    Xu HS; Xu ZX; Liu P
    Huan Jing Ke Xue; 2013 Mar; 34(3):882-91. PubMed ID: 23745390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An index-based robust decision making framework for watershed management in a changing climate.
    Kim Y; Chung ES
    Sci Total Environ; 2014 Mar; 473-474():88-102. PubMed ID: 24365586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China.
    Zhao L; Zhang X; Liu Y; He B; Zhu X; Zou R; Zhu Y
    J Environ Sci (China); 2012; 24(8):1355-63. PubMed ID: 23513675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of pollutant loads from stormwater BMPs to receiving water using load frequency curves with uncertainty analysis.
    Park D; Roesner LA
    Water Res; 2012 Dec; 46(20):6881-90. PubMed ID: 22578429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HSPF-based watershed-scale water quality modeling and uncertainty analysis.
    Roostaee M; Deng Z
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8971-8991. PubMed ID: 30719665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.