These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 31731135)

  • 21. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and phytoremediation potential of spontaneous species in vineyard soils contaminated with copper.
    Melo GW; Furini G; Brunetto G; Comin JJ; Simão DG; Marques ACR; Marchezan C; Silva ICB; Souza M; Soares CR; Zalamena J
    Int J Phytoremediation; 2022; 24(4):342-349. PubMed ID: 35180014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium water treatment residue reduces copper phytotoxicity in contaminated sandy soils.
    Fan J; He Z; Ma LQ; Nogueira TA; Wang Y; Liang Z; Stoffella PJ
    J Hazard Mater; 2012 Jan; 199-200():375-82. PubMed ID: 22138174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: Influences on copper bioavailability and uptake.
    McManus P; Hortin J; Anderson AJ; Jacobson AR; Britt DW; Stewart J; McLean JE
    Environ Toxicol Chem; 2018 Oct; 37(10):2619-2632. PubMed ID: 29978493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.
    Sharaff M; Kamat S; Archana G
    Ecotoxicol Environ Saf; 2017 Apr; 138():113-121. PubMed ID: 28038338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains.
    Ke T; Guo G; Liu J; Zhang C; Tao Y; Wang P; Xu Y; Chen L
    Environ Pollut; 2021 Feb; 271():116314. PubMed ID: 33360656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cadmium accumulation in oilseed rape is promoted by intercropping with faba bean and ryegrass.
    Xiao Z; Zou D; Zeng X; Zhang L; Liu F; Wang A; Zeng Q; Zhang G; Li L
    Ecotoxicol Environ Saf; 2020 Dec; 205():111162. PubMed ID: 32836158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amendments promote the development of Lolium perenne in soils affected by historical copper smelting operations.
    Goecke P; Ginocchio R; Mench M; Neaman A
    Int J Phytoremediation; 2011 Jul; 13(6):552-66. PubMed ID: 21972502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of vineyard abandonment and natural recolonization on metal content and availability in Mediterranean soils.
    de Santiago-Martín A; Vaquero-Perea C; Valverde-Asenjo I; Quintana Nieto JR; González-Huecas C; Lafuente AL; Vázquez de la Cueva A
    Sci Total Environ; 2016 May; 551-552():57-65. PubMed ID: 26874761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Do soil Fe transformation and secretion of low-molecular-weight organic acids affect the availability of Cd to rice?
    Chen X; Yang Y; Liu D; Zhang C; Ge Y
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19497-506. PubMed ID: 26260840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of soil copper phytotoxicity to barley root elongation by an EDTA extraction method.
    Jiang B; Ma Y; Zhu G; Li J
    J Hazard Mater; 2020 May; 389():121869. PubMed ID: 31848098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential for phytoextraction of copper by Sinapis alba and Festuca rubra cv. Merlin grown hydroponically and in vineyard soils.
    Malagoli M; Rossignolo V; Salvalaggio N; Schiavon M
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3294-303. PubMed ID: 24234763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil.
    Andrade SA; Silveira AP; Mazzafera P
    Sci Total Environ; 2010 Oct; 408(22):5381-91. PubMed ID: 20716461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review.
    Kumar V; Pandita S; Singh Sidhu GP; Sharma A; Khanna K; Kaur P; Bali AS; Setia R
    Chemosphere; 2021 Jan; 262():127810. PubMed ID: 32763578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Changes in bio-availability of immobilized Cu and Zn bound to phosphate in contaminated soils with different nutrient addition].
    Xu MG; Zhang Q; Sun N; Shen HP; Zhang WJ
    Huan Jing Ke Xue; 2009 Jul; 30(7):2053-8. PubMed ID: 19775007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa.
    Wang MC; Chen YT; Chen SH; Chang Chien SW; Sunkara SV
    Chemosphere; 2012 Apr; 87(3):217-25. PubMed ID: 22245074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Research advances in iron and zinc transfer from soil to plant in intercropping systems].
    Xia HY; Xue YF; Meng WW; Yu LM; Liu LY; Zhang Z
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):1263-70. PubMed ID: 26259472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens.
    Sharifan H; Moore J; Ma X
    Ecotoxicol Environ Saf; 2020 Mar; 191():110177. PubMed ID: 31958627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars.
    Javed MT; Akram MS; Tanwir K; Javed Chaudhary H; Ali Q; Stoltz E; Lindberg S
    Ecotoxicol Environ Saf; 2017 Jul; 141():216-225. PubMed ID: 28349873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.