These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 31731255)

  • 1. Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study.
    Fermanelli CS; Córdoba A; Pierella LB; Saux C
    Waste Manag; 2020 Feb; 102():362-370. PubMed ID: 31731255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.
    Biswas B; Pandey N; Bisht Y; Singh R; Kumar J; Bhaskar T
    Bioresour Technol; 2017 Aug; 237():57-63. PubMed ID: 28238637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality.
    Hopa DY; Alagöz O; Yılmaz N; Dilek M; Arabacı G; Mutlu T
    Waste Manag Res; 2019 Sep; 37(9):925-933. PubMed ID: 31319779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.
    Mamaeva A; Tahmasebi A; Tian L; Yu J
    Bioresour Technol; 2016 Jul; 211():382-9. PubMed ID: 27030958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.
    Wang N; Tahmasebi A; Yu J; Xu J; Huang F; Mamaeva A
    Bioresour Technol; 2015 Aug; 190():89-96. PubMed ID: 25935388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of stepwise pyrolysis for on-site treatment of agro-residues and enrichment of value-added chemicals.
    Bhatnagar A; Tolvanen H; Konttinen J
    Waste Manag; 2020 Dec; 118():667-676. PubMed ID: 33011544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system.
    Wang Y; Zeng Z; Tian X; Dai L; Jiang L; Zhang S; Wu Q; Wen P; Fu G; Liu Y; Ruan R
    Bioresour Technol; 2018 Dec; 269():162-168. PubMed ID: 30172179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation.
    Suriapparao DV; Vinu R; Shukla A; Haldar S
    Bioresour Technol; 2020 Apr; 302():122775. PubMed ID: 31986334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer.
    Ro D; Shafaghat H; Jang SH; Lee HW; Jung SC; Jae J; Cha JS; Park YK
    Environ Res; 2019 May; 172():658-664. PubMed ID: 30878737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water.
    Shi W; Jia J; Gao Y; Zhao Y
    Bioresour Technol; 2013 Oct; 146():355-362. PubMed ID: 23948273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres.
    Alvarez J; Amutio M; Lopez G; Santamaria L; Bilbao J; Olazar M
    Waste Manag; 2019 Feb; 85():385-395. PubMed ID: 30803593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: Pyrolysis behavior and product analyses.
    Tan YL; Abdullah AZ; Hameed BH
    Bioresour Technol; 2017 Nov; 243():85-92. PubMed ID: 28651142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pretreatment and biomass blending on bio-oil and biochar quality from two-step slow pyrolysis of rice straw.
    Bhatnagar A; Singhal A; Tolvanen H; Valtonen K; Joronen T; Konttinen J
    Waste Manag; 2022 Feb; 138():298-307. PubMed ID: 34922304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic pyrolysis of agricultural and forestry wastes in a fixed-bed reactor using K
    Fan H; Chang X; Wang J; Zhang Z
    Waste Manag Res; 2020 Jan; 38(1):78-87. PubMed ID: 31561748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.
    Aysu T; Durak H; Güner S; Bengü AŞ; Esim N
    Bioresour Technol; 2016 Apr; 205():7-14. PubMed ID: 26800388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis Oil Biorefinery.
    Meier D
    Adv Biochem Eng Biotechnol; 2019; 166():301-337. PubMed ID: 28289770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Bio-oil production from biomass pyrolysis in molten salt].
    Ji D; Cai T; Ai N; Yu F; Jiang H; Ji J
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):475-81. PubMed ID: 21650030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignocellulosic biomass-based pyrolysis: A comprehensive review.
    K N Y; T PD; P S; S K; R YK; Varjani S; AdishKumar S; Kumar G; J RB
    Chemosphere; 2022 Jan; 286(Pt 2):131824. PubMed ID: 34388872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential Quality Attributes of Tangible Bio-Oils from Catalytic Pyrolysis of Lignocellulosic Biomass.
    Zhang C; Zhang ZC
    Chem Rec; 2019 Sep; 19(9):2044-2057. PubMed ID: 31483089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.