These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31731362)

  • 1. Global Tracking of Myocardial Motion in Ultrasound Sequence Images: A Feasibility Study.
    Wang YN; Liu XM; Song XF; Wang Q; Feng QJ; Chen WF
    Math Biosci Eng; 2019 Oct; 17(1):478-493. PubMed ID: 31731362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frame rate, full-view myocardial elastography with automated contour tracking in murine left ventricles in vivo.
    Luo J; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):240-8. PubMed ID: 18334330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial elastography at both high temporal and spatial resolution for the detection of infarcts.
    Luo J; Fujikura K; Homma S; Konofagou EE
    Ultrasound Med Biol; 2007 Aug; 33(8):1206-23. PubMed ID: 17570577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radial Motion Estimation of Myocardium in Rats with Myocardial Infarction: A Hybrid Method of FNCCGLAM and Polar Transformation.
    Liu X; Wang Y; Zhang P; Wang Q; Feng Q; Chen W
    Ultrasound Med Biol; 2020 Dec; 46(12):3413-3425. PubMed ID: 32921512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardial elastogram using a fast mapping algorithm.
    Wang YN; Song XF; Huang ZJ; Wang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3236-3239. PubMed ID: 29060587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical quality assessment of myocardial elastography with in vivo validation.
    Lee WN; Ingrassia CM; Fung-Kee-Fung SD; Costa KD; Holmes JW; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Nov; 54(11):2233-45. PubMed ID: 18051158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmental and transmural motion of the rat myocardium estimated using quantitative ultrasound with new strategies for infarct detection.
    Wang Y; Chen W; Wang Q
    Front Bioeng Biotechnol; 2023; 11():1236108. PubMed ID: 37744251
    [No Abstract]   [Full Text] [Related]  

  • 8. Noninvasive electromechanical wave imaging and conduction-relevant velocity estimation in vivo.
    Konofagou EE; Luo J; Saluja D; Cervantes DO; Coromilas J; Fujikura K
    Ultrasonics; 2010 Feb; 50(2):208-15. PubMed ID: 19863987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
    Al Mukaddim R; Meshram NH; Varghese T
    Phys Med Biol; 2020 Mar; 65(6):065008. PubMed ID: 32028272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Left ventricle wall motion quantification from echocardiographic images by non-rigid image registration.
    Shalbaf A; Behnam H; Alizade-Sani Z; Shojaifard M
    Int J Comput Assist Radiol Surg; 2012 Sep; 7(5):769-83. PubMed ID: 22847528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial elastography--a feasibility study in vivo.
    Konofagou EE; D'hooge J; Ophir J
    Ultrasound Med Biol; 2002 Apr; 28(4):475-82. PubMed ID: 12049961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automated framework for the analysis of myocardial first-pass perfusion MR images.
    Beache GM; Khalifa F; El-Baz A; Gimel'farb G
    Med Phys; 2014 Oct; 41(10):102305. PubMed ID: 25281975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic estimation of myocardial deformation using ultrasound RF-data: A preliminary study.
    Shan ZR; Li X; Wang YN; Wang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6354-7. PubMed ID: 26737746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Motion Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and In Vivo Validation.
    Mukaddim RA; Meshram NH; Mitchell CC; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Nov; 66(11):1708-1722. PubMed ID: 31329553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression.
    Tan LK; McLaughlin RA; Lim E; Abdul Aziz YF; Liew YM
    J Magn Reson Imaging; 2018 Jul; 48(1):140-152. PubMed ID: 29316024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust myocardial motion tracking for echocardiography: variational framework integrating local-to-global deformation.
    Ahn CY
    Comput Math Methods Med; 2013; 2013():974027. PubMed ID: 23554841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental performance assessment of 2-D myocardial elastography in a phased-array configuration.
    Luo J; Lee WN; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2320-7. PubMed ID: 19942518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of motion of the heart for use in generating source and attenuation maps for simulating emission imaging.
    Pretorius PH; King MA; Tsui BM; LaCroix KJ; Xia W
    Med Phys; 1999 Nov; 26(11):2323-32. PubMed ID: 10587213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging of wall motion coupled with blood flow velocity in the heart and vessels in vivo: a feasibility study.
    Luo J; Konofagou EE
    Ultrasound Med Biol; 2011 Jun; 37(6):980-95. PubMed ID: 21546155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNN-Based Ultrasound Image Reconstruction for Ultrafast Displacement Tracking.
    Perdios D; Vonlanthen M; Martinez F; Arditi M; Thiran JP
    IEEE Trans Med Imaging; 2021 Mar; 40(3):1078-1089. PubMed ID: 33351759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.