These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 31731382)

  • 1. Realizations of kinetic differential equations.
    Craciun G; Johnston MD; Szederkényi G; Tonello E; Tóth J; Yu PY
    Math Biosci Eng; 2019 Nov; 17(1):862-892. PubMed ID: 31731382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniqueness of weakly reversible and deficiency zero realizations of dynamical systems.
    Craciun G; Jin J; Yu PY
    Math Biosci; 2021 Dec; 342():108720. PubMed ID: 34695440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gradual update method for simulating the steady-state solution of stiff differential equations in metabolic circuits.
    Shiraishi E; Maeda K; Kurata H
    Bioprocess Biosyst Eng; 2009 Feb; 32(2):283-8. PubMed ID: 18633649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective parameters determining the information flow in hierarchical biological systems.
    Blöchl F; Wittmann DM; Theis FJ
    Bull Math Biol; 2011 Apr; 73(4):706-25. PubMed ID: 21181504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple Equations Method and Non-Linear Differential Equations with Non-Polynomial Non-Linearity.
    Vitanov NK; Dimitrova ZI
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PolyODENet: Deriving mass-action rate equations from incomplete transient kinetics data.
    Wu Q; Avanesian T; Qu X; Van Dam H
    J Chem Phys; 2022 Oct; 157(16):164801. PubMed ID: 36319405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translated chemical reaction networks.
    Johnston MD
    Bull Math Biol; 2014 May; 76(5):1081-116. PubMed ID: 24610094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating Chemical Kinetics Without Differential Equations: A Quantitative Theory Based on Chemical Pathways.
    Bai S; Skodje RT
    J Phys Chem Lett; 2017 Aug; 8(16):3826-3833. PubMed ID: 28763229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex-linear invariants of biochemical networks.
    Karp RL; Pérez Millán M; Dasgupta T; Dickenstein A; Gunawardena J
    J Theor Biol; 2012 Oct; 311():130-8. PubMed ID: 22814477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.
    Zhang F; Yeh GT; Parker JC; Brooks SC; Pace MN; Kim YJ; Jardine PM; Watson DB
    J Contam Hydrol; 2007 Jun; 92(1-2):10-32. PubMed ID: 17229488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilayer neural networks for solving a class of partial differential equations.
    He S; Reif K; Unbehauen R
    Neural Netw; 2000 Apr; 13(3):385-96. PubMed ID: 10937971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic reduction with applications to mathematical biology and other areas.
    Sacker RJ; Von Bremen HF
    J Biol Dyn; 2007 Oct; 1(4):437-53. PubMed ID: 22876827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing general partial differential equations using polynomial and neural networks.
    Zjavka L; Pedrycz W
    Neural Netw; 2016 Jan; 73():58-69. PubMed ID: 26547244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction networks and kinetics of biochemical systems.
    Arceo CPP; Jose EC; Lao AR; Mendoza ER
    Math Biosci; 2017 Jan; 283():13-29. PubMed ID: 27818257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordinary differential equations with applications in molecular biology.
    Ilea M; Turnea M; Rotariu M
    Rev Med Chir Soc Med Nat Iasi; 2012; 116(1):347-52. PubMed ID: 23077920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical solutions for systems of partial differential-algebraic equations.
    Benhammouda B; Vazquez-Leal H
    Springerplus; 2014; 3():137. PubMed ID: 24741473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor binding kinetics equations: Derivation using the Laplace transform method.
    Hoare SRJ
    J Pharmacol Toxicol Methods; 2018; 89():26-38. PubMed ID: 28818556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.
    Costa RS; Machado D; Rocha I; Ferreira EC
    Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the kinetics of acylation of insulin using a recursive method for solving the systems of coupled differential equations.
    Grzybowski BA; Anderson JR; Colton I; Brittain ST; Shakhnovich EI; Whitesides GM
    Biophys J; 2000 Feb; 78(2):652-61. PubMed ID: 10653778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.