These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31731443)

  • 41. Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO:Eu(3+),Tb(3+) coated TiO2 film.
    Yao N; Huang J; Fu K; Deng X; Ding M; Zhang S; Xu X; Li L
    Sci Rep; 2016 Aug; 6():31123. PubMed ID: 27506930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Universal Efficiency Improvement in Organic Solar Cells Based on a Poly(3-hexylthiophene) Donor and an Indene-C60 Bisadduct Acceptor with Additional Donor Nanowires.
    Joe SY; Yim JH; Ryu SY; Ha NY; Ahn YH; Park JY; Lee S
    Chemphyschem; 2015 Apr; 16(6):1217-22. PubMed ID: 25760990
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing the photovoltaic performance of bulk heterojunction polymer solar cells by adding Rhodamine B laser dye as co-sensitizer.
    Kazemifard S; Naji L; Afshar Taromi F
    J Colloid Interface Sci; 2018 Apr; 515():139-151. PubMed ID: 29335181
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly(3-hexylthiophene): fullerene derivative solar cells.
    Shao S; Liu J; Zhang J; Zhang B; Xie Z; Geng Y; Wang L
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5704-10. PubMed ID: 23027773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of polymer morphology on P3HT-based solid-state dye sensitized solar cells: an ultrafast spectroscopic investigation.
    Kumar RS; Grancini G; Petrozza A; Abrusci A; Snaith HJ; Lanzani G
    Opt Express; 2013 May; 21 Suppl 3():A469-74. PubMed ID: 24104435
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Carrier lifetime extension via the incorporation of robust hole/electron blocking layers in bulk heterojunction polymer solar cells.
    Yoon Y; Kim HJ; Cho CH; Kim S; Son HJ; Ko MJ; Kim H; Lee DK; Kim JY; Lee W; Kim BJ; Kim B
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):333-9. PubMed ID: 24256096
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In Situ Growth of Metal Sulfide Nanocrystals in Poly(3-hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Films for Inverted Hybrid Solar Cells with Enhanced Photocurrent.
    Yang C; Sun Y; Li X; Li C; Tong J; Li J; Zhang P; Xia Y
    Nanoscale Res Lett; 2018 Jun; 13(1):184. PubMed ID: 29926214
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polymer/Fullerene Blend Solar Cells with Cadmium Sulfide Thin Film as an Alternative Hole-Blocking Layer.
    Thanihaichelvan M; Loheeswaran S; Balashangar K; Velauthapillai D; Ravirajan P
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960444
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of Sodium Dodecyl Sulfate as a Co-Adsorbate on the Performance of Dye-Sensitized Solar Cells.
    Oh JH; Sung SJ; Han YS
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7727-32. PubMed ID: 26726402
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Panchromatic Sensitizer for Dye-Sensitized Solar Cells: Unsymmetrical Squaraine Dyes Incorporating Benzodithiophene π-Spacer with Alkyl Chains to Extend Conjugation, Control the Dye Assembly on TiO
    Bisht R; M K MF; Singh AK; Nithyanandhan J
    J Org Chem; 2017 Feb; 82(4):1920-1930. PubMed ID: 28121159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells.
    Lefrançois A; Luszczynska B; Pepin-Donat B; Lombard C; Bouthinon B; Verilhac JM; Gromova M; Faure-Vincent J; Pouget S; Chandezon F; Sadki S; Reiss P
    Sci Rep; 2015 Jan; 5():7768. PubMed ID: 25588811
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of donor content on the efficiency of P3HT:PCBM bilayers: optical and photocurrent spectral data analyses.
    Casalegno M; Kotowski D; Bernardi A; Luzzati S; Po R; Raos G
    Phys Chem Chem Phys; 2015 Jan; 17(4):2447-56. PubMed ID: 25493298
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films.
    Green AN; Palomares E; Haque SA; Kroon JM; Durrant JR
    J Phys Chem B; 2005 Jun; 109(25):12525-33. PubMed ID: 16852549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor.
    Lei H; Yang G; Guo Y; Xiong L; Qin P; Dai X; Zheng X; Ke W; Tao H; Chen Z; Li B; Fang G
    Phys Chem Chem Phys; 2016 Jun; 18(24):16436-43. PubMed ID: 27264190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Correlation between Photovoltaic Performance and Interchain Ordering Induced Delocalization of Electronics States in Conjugated Polymer Blends.
    Chandrasekaran N; Gann E; Jain N; Kumar A; Gopinathan S; Sadhanala A; Friend RH; Kumar A; McNeill CR; Kabra D
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20243-50. PubMed ID: 27415029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The influence of sequential ligand exchange and elimination on the performance of P3HT: CdSe quantum dot hybrid solar cells.
    Lee D; Lim J; Park M; Kim JY; Song J; Kwak J; Lee S; Char K; Lee C
    Nanotechnology; 2015 Nov; 26(46):465401. PubMed ID: 26511310
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of Dimethyl Sulfoxide as Processing Additive for Improving Efficiency of Polymer Solar Cells.
    Yang BY; He DW; Zhuo ZL; Wang YS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):287-92. PubMed ID: 30221897
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A scanning probe microscopy study of nanostructured TiO
    Letertre L; Roche R; Douhéret O; Kassa HG; Mariolle D; Chevalier N; Borowik Ł; Dumas P; Grévin B; Lazzaroni R; Leclère P
    Beilstein J Nanotechnol; 2018; 9():2087-2096. PubMed ID: 30202681
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancing performance of P3HT:TiO₂ solar cells using doped and surface modified TiO₂ nanorods.
    Tu YC; Lim H; Chang CY; Shyue JJ; Su WF
    J Colloid Interface Sci; 2015 Jun; 448():315-9. PubMed ID: 25746184
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation of porous titania film and its application in solar cells.
    Zhang T; Zhao S; Piao L; Xu Z; Liu X; Kong C; Xu X
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9745-8. PubMed ID: 22413285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.