These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31731489)

  • 1. Design and Verification of a Dry Sensor-Based Multi-Channel Digital Active Circuit for Human Brain Electroencephalography Signal Acquisition Systems.
    Lin CT; Liu CH; Wang PS; King JT; Liao LD
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31731489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of the multi-channel electroencephalography-based brain-computer interface with novel dry sensors.
    Wu SL; Liao LD; Liou CH; Chen SA; Ko LW; Chen BW; Wang PS; Chen SF; Lin CT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1793-7. PubMed ID: 23366259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and verification of a wearable wireless 64-channel high-resolution EEG acquisition system with wi-fi transmission.
    Lin CT; Wang Y; Chen SF; Huang KC; Liao LD
    Med Biol Eng Comput; 2023 Nov; 61(11):3003-3019. PubMed ID: 37563528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors.
    Liao LD; Chen CY; Wang IJ; Chen SF; Li SY; Chen BW; Chang JY; Lin CT
    J Neuroeng Rehabil; 2012 Jan; 9():5. PubMed ID: 22284235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.
    Lo CC; Chien TY; Chen YC; Tsai SH; Fang WC; Lin BS
    Sensors (Basel); 2016 Feb; 16(2):213. PubMed ID: 26861347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.
    Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT
    Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Dry EEG-System for Scientific Research and Brain-Computer Interfaces.
    Zander TO; Lehne M; Ihme K; Jatzev S; Correia J; Kothe C; Picht B; Nijboer F
    Front Neurosci; 2011; 5():53. PubMed ID: 21647345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dry and noncontact EEG sensors for mobile brain-computer interfaces.
    Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Vigorous Cycling Exercise on Visual Attention: A Study With the BR8 Wireless Dry EEG System.
    Lin CT; King JT; John AR; Huang KC; Cao Z; Wang YK
    Front Neurosci; 2021; 15():621365. PubMed ID: 33679304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, Fabrication, and Experimental Validation of Novel Flexible Silicon-Based Dry Sensors for Electroencephalography Signal Measurements.
    Yu YH; Lu SW; Liao LD; Lin CT
    IEEE J Transl Eng Health Med; 2014; 2():2700307. PubMed ID: 27170884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-Based Brain-Computer Interfaces.
    Wang Y; Nakanishi M; Zhang D
    Adv Exp Med Biol; 2019; 1101():41-65. PubMed ID: 31729671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Wearable Motor-Imagery-Based Brain-Computer Interface.
    Lin BS; Pan JS; Chu TY; Lin BS
    J Med Syst; 2016 Mar; 40(3):71. PubMed ID: 26748791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-speed brain-computer interface (BCI) using dry EEG electrodes.
    Spüler M
    PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.
    Yu YH; Lu SW; Chuang CH; King JT; Chang CL; Chen SA; Chen SF; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):806-13. PubMed ID: 26780814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-contact Wearable EEG Sensors for SSVEP-based Brain Computer Interface Applications.
    Soleymanpour R; Patel C; Kim I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2016-2019. PubMed ID: 30440796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multichannel EEG Acquisition System With Novel Ag NWs/PDMS Flexible Dry Electrodes.
    Wang Z; Chen C; Li W; Yuan W; Han T; Sun C; Tao L; Zhao Y; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1299-1302. PubMed ID: 30440629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Test-Retest Reliability of Time-Domain EEG Features to Assess Cognitive Load Using a Wireless Dry-Electrode System.
    Ortiz O; Blustein D; Kuruganti U
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2885-2888. PubMed ID: 33018609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of smart EEG cap.
    Lin BS; Huang YK; Lin BS
    Comput Methods Programs Biomed; 2019 Sep; 178():41-46. PubMed ID: 31416561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Wearable Headset with Steady State Visually Evoked Potential-Based Brain Computer Interface.
    Lin BS; Lin BS; Yen TH; Hsu CC; Wang YC
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31658616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Magnetoencephalographic/Encephalographic (MEG/EEG) Brain-Computer Interface Driver for Interactive iOS Mobile Videogame Applications Utilizing the Hadoop Ecosystem, MongoDB, and Cassandra NoSQL Databases.
    McClay W
    Diseases; 2018 Sep; 6(4):. PubMed ID: 30274210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.