BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31731543)

  • 1. Performance and Long Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia.
    Sudirjo E; de Jager P; Buisman CJN; Strik DPBTB
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31731543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.
    Kouzuma A; Kaku N; Watanabe K
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9521-6. PubMed ID: 25394406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced electricity generation in rice paddy-field microbial fuel cells supplemented with iron powders.
    Matsumoto A; Nagoya M; Tsuchiya M; Suga K; Inohana Y; Hirose A; Yamada S; Hirano S; Ito Y; Tanaka S; Kouzuma A; Watanabe K
    Bioelectrochemistry; 2020 Dec; 136():107625. PubMed ID: 32781329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of long-term organic and conventional fertilization on bacterial communities involved in bioelectricity production from paddy field-microbial fuel cells.
    Kamaraj Y; Punamalai G; Kandasamy S; Kasinathan K
    Arch Microbiol; 2020 Oct; 202(8):2279-2289. PubMed ID: 32535790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electricity generation from rice bran in microbial fuel cells.
    Takahashi S; Miyahara M; Kouzuma A; Watanabe K
    Bioresour Bioprocess; 2016; 3(1):50. PubMed ID: 27942435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant/microbe cooperation for electricity generation in a rice paddy field.
    Kaku N; Yonezawa N; Kodama Y; Watanabe K
    Appl Microbiol Biotechnol; 2008 May; 79(1):43-9. PubMed ID: 18320186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.
    Kouzuma A; Kasai T; Nakagawa G; Yamamuro A; Abe T; Watanabe K
    PLoS One; 2013; 8(11):e77443. PubMed ID: 24223712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity.
    Gregoire KP; Becker JG
    Bioresour Technol; 2012 Sep; 119():208-15. PubMed ID: 22728202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparison of power generation in microbial fuel cells of two different structures].
    Luo HP; Liu GL; Zhang RD; Jin S
    Huan Jing Ke Xue; 2009 Feb; 30(2):621-4. PubMed ID: 19402526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power generation in MFCs with architectures based on tubular cathodes or fully tubular reactors.
    Zuo Y; Logan BE
    Water Sci Technol; 2011; 64(11):2253-8. PubMed ID: 22156130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Application of Microbial Fuel Cells in Reducing Methane Emission from Rice Paddy].
    Deng H; Cai LC; Jiang YB; Zhong WH
    Huan Jing Ke Xue; 2016 Jan; 37(1):359-65. PubMed ID: 27078978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].
    Wang F; Li QH; Lin C; He CM; Zhong SJ; Li Y; Lin XJ; Huang JC
    Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1469-76. PubMed ID: 26571667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research Progress in Technology of Using Soil Micro-organisms to Generate Electricity and Its Potential Applications].
    Deng H; Xue HJ; Jiang YB; Zhong WH
    Huan Jing Ke Xue; 2015 Oct; 36(10):3926-34. PubMed ID: 26841633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell.
    Ishii S; Shimoyama T; Hotta Y; Watanabe K
    BMC Microbiol; 2008 Jan; 8():6. PubMed ID: 18186940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage recovery from frozen microbial fuel cells in the laboratory and outdoor field reactors.
    Lin C; Liang H; Yang X; Zhan J; Yang Q
    Sci Total Environ; 2024 Sep; 942():173751. PubMed ID: 38839000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The voltage signals of microbial fuel cell-based sensors positively correlated with methane emission flux in paddy fields of China.
    Wu SS; Hernández M; Deng YC; Han C; Hong X; Xu J; Zhong WH; Deng H
    FEMS Microbiol Ecol; 2019 Mar; 95(3):. PubMed ID: 30715248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using live algae at the anode of a microbial fuel cell to generate electricity.
    Xu C; Poon K; Choi MM; Wang R
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15621-35. PubMed ID: 26018284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioelectricity generation in an integrated system combining microbial fuel cell and tubular membrane reactor: effects of operation parameters performing a microbial fuel cell-based biosensor for tubular membrane bioreactor.
    Wang J; Zheng Y; Jia H; Zhang H
    Bioresour Technol; 2014 Oct; 170():483-490. PubMed ID: 25164340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes.
    Zhu N; Chen X; Zhang T; Wu P; Li P; Wu J
    Bioresour Technol; 2011 Jan; 102(1):422-6. PubMed ID: 20594833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.