BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 31731575)

  • 1. A Comparative Analysis of
    Li H; Sun B; Ning X; Jiang S; Sun L
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731575
    [No Abstract]   [Full Text] [Related]  

  • 2. Transcriptome Analysis of
    Sun B; Li X; Ning X; Sun L
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32353932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome profiling based on protein-protein interaction networks provides a core set of genes for understanding blood immune response mechanisms against Edwardsiella tarda infection in Japanese flounder (Paralichthys olivaceus).
    Li Z; Liu X; Liu J; Zhang K; Yu H; He Y; Wang X; Qi J; Wang Z; Zhang Q
    Dev Comp Immunol; 2018 Jan; 78():100-113. PubMed ID: 28923591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequencing-based network analysis provides a core set of gene resource for understanding kidney immune response against Edwardsiella tarda infection in Japanese flounder.
    Liu X; Li Z; Wu W; Liu Y; Liu J; He Y; Wang X; Wang Z; Qi J; Yu H; Zhang Q
    Fish Shellfish Immunol; 2017 Aug; 67():643-654. PubMed ID: 28651821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytokines Induced by
    Li H; Sun B; Jiang S; Sun L
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439908
    [No Abstract]   [Full Text] [Related]  

  • 6. Intracellular Trafficking Pathways of
    Sui ZH; Xu H; Wang H; Jiang S; Chi H; Sun L
    Front Cell Infect Microbiol; 2017; 7():400. PubMed ID: 28932708
    [No Abstract]   [Full Text] [Related]  

  • 7. Transcriptome profiling provides gene resources for understanding gill immune responses in Japanese flounder (Paralichthys olivaceus) challenged with Edwardsiella tarda.
    Li Z; Liu X; Cheng J; He Y; Wang X; Wang Z; Qi J; Yu H; Zhang Q
    Fish Shellfish Immunol; 2018 Jan; 72():593-603. PubMed ID: 29175442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of macrophage in response to Edwardsiella tarda-infection.
    Qin L; Li F; Wang X; Sun Y; Bi K; Gao Y
    Microb Pathog; 2017 Oct; 111():86-93. PubMed ID: 28826764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A live attenuated Edwardsiella tarda vaccine induces immunological expression pattern in Japanese flounder (Paralichthys olivaceus) in the early phase of immunization.
    Li XP; Zhang J
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Jan; 239():108872. PubMed ID: 32814144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splenic protection network revealed by transcriptome analysis in inactivated vaccine-immunized flounder (
    Wu X; Xing J; Tang X; Sheng X; Chi H; Zhan W
    Front Immunol; 2022; 13():1058599. PubMed ID: 36439120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramacrophage Infection Reinforces the Virulence of Edwardsiella tarda.
    Zhang L; Ni C; Xu W; Dai T; Yang D; Wang Q; Zhang Y; Liu Q
    J Bacteriol; 2016 May; 198(10):1534-42. PubMed ID: 26953340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda.
    van Soest JJ; Stockhammer OW; Ordas A; Bloemberg GV; Spaink HP; Meijer AH
    BMC Immunol; 2011 Oct; 12():58. PubMed ID: 22003892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opsonized virulent Edwardsiella tarda strains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates.
    Srinivasa Rao PS; Lim TM; Leung KY
    Infect Immun; 2001 Sep; 69(9):5689-97. PubMed ID: 11500445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo whole transcriptome profiling of Edwardsiella tarda isolated from infected fish (Labeo catla).
    Das BK; Chakraborty HJ; Rout AK; Behera BK
    Gene; 2019 Jun; 701():152-160. PubMed ID: 30910556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The major fimbrial subunit protein of Edwardsiella tarda: vaccine potential, adjuvant effect, and involvement in host infection.
    Wang C; Hu YH; Chi H; Sun L
    Fish Shellfish Immunol; 2013 Sep; 35(3):858-65. PubMed ID: 23811351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EsR240, a non-coding sRNA, is required for the resistance of Edwardsiella tarda to stresses in macrophages and for virulence.
    Gao D; Zhang Y; Liu R; Fang Z; Lu C
    Vet Microbiol; 2019 Apr; 231():254-263. PubMed ID: 30955819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edwardsiella tarda-Induced Inhibition of Apoptosis: A Strategy for Intracellular Survival.
    Zhou ZJ; Sun L
    Front Cell Infect Microbiol; 2016; 6():76. PubMed ID: 27471679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro model to estimate Edwardsiella tarda-macrophage interactions using RAW264.7 cells.
    Qin L; Sun Y; Zhao Y; Xu J; Bi K
    Fish Shellfish Immunol; 2017 Jan; 60():177-184. PubMed ID: 27838567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The global regulatory effect of Edwardsiella tarda Fur on iron acquisition, stress resistance, and host infection: A proteomics-based interpretation.
    Hu YH; Sun L
    J Proteomics; 2016 May; 140():100-10. PubMed ID: 27102497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis of turbot (Scophthalmus maximus) kidney responses to inactivated bivalent vaccine against Aeromonas salmonicida and Edwardsiella tarda.
    Xiu Y; Guo B; Yang Z; Yi J; Guo H; Munang'andu HM; Xu C; Zhou S
    Fish Shellfish Immunol; 2023 Dec; 143():109174. PubMed ID: 37858783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.