These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31731962)

  • 1. A new understanding: Gene expression, cell characteristic and antioxidant enzymes of Zygosaccharomyces rouxii under the D-fructose regulation.
    Liu H; Dai L; Wang F; Li X; Liu W; Pan B; Wang C; Zhang D; Deng J; Li Z
    Enzyme Microb Technol; 2020 Jan; 132():109409. PubMed ID: 31731962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of the response of Zygosaccharomyces rouxii to D-fructose stress by the glutathione metabolism pathway.
    Liu H; Li X; Deng J; Dai L; Liu W; Pan B; Wang C; Zhang D; Li Z
    FEMS Yeast Res; 2020 Aug; 20(5):. PubMed ID: 32556118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The high-capacity specific fructose facilitator ZrFfz1 is essential for the fructophilic behavior of Zygosaccharomyces rouxii CBS 732T.
    Leandro MJ; Cabral S; Prista C; Loureiro-Dias MC; Sychrová H
    Eukaryot Cell; 2014 Nov; 13(11):1371-9. PubMed ID: 25172765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of furanone production through the EMP and PP pathways in Zygosaccharomyces rouxii with D-fructose addition.
    Li X; Dai L; Liu H; Liu W; Pan B; Wang X; Deng J; Wang C; Zhang D; Li Z
    Food Res Int; 2020 Jul; 133():109137. PubMed ID: 32466928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters.
    Leandro MJ; Sychrová H; Prista C; Loureiro-Dias MC
    Microbiology (Reading); 2011 Feb; 157(Pt 2):601-608. PubMed ID: 21051487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2,5-Dimethyl-4-hydroxy-3(2H)-furanone as a secondary metabolite from D-fructose-1,6-diphosphate metabolism by Zygosaccharomyces rouxii.
    Dahlen T; Hauck T; Wein M; Schwab W
    J Biosci Bioeng; 2001; 91(4):352-8. PubMed ID: 16233003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene.
    Iwaki T; Tamai Y; Watanabe Y
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():241-248. PubMed ID: 10206704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii.
    Leandro MJ; Sychrová H; Prista C; Loureiro-Dias MC
    PLoS One; 2013; 8(7):e68165. PubMed ID: 23844167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of the
    Wang Y; Liu W; Chen J; Li Z; Hu Y; Fan Z; Yan L; Liu J; Zhou Y; Jiang W; Rui H; Dai L
    Front Microbiol; 2024; 15():1366021. PubMed ID: 38577687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential hypersaline stress response in Zygosaccharomyces rouxii complex yeasts: a physiological and transcriptional study.
    Solieri L; Vezzani V; Cassanelli S; Dakal TC; Pazzini J; Giudici P
    FEMS Yeast Res; 2016 Sep; 16(6):. PubMed ID: 27493145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of salt-induced genes of Zygosaccharomyces rouxii by using Saccharomyces cerevisiae GeneFilters.
    Schoondermark-Stolk SA; ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J
    FEMS Yeast Res; 2002 Dec; 2(4):525-32. PubMed ID: 12702268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of 4-hydroxy-2,5-dimethyl-3[2H]-furanone by Zygosaccharomyces rouxii: identification of an intermediate.
    Hauck T; Brühlmann F; Schwab W
    Appl Environ Microbiol; 2003 Jul; 69(7):3911-8. PubMed ID: 12839760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4-hydroxy-2,5-dimethyl-3(2H)-furanone formation by Zygosaccharomyces rouxii: effect of the medium.
    Hauck T; Brühlmann F; Schwab W
    J Agric Food Chem; 2003 Jul; 51(16):4753-6. PubMed ID: 14705908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of co-culture with Tetragenococcus halophilus on the physiological characterization and transcription profiling of Zygosaccharomyces rouxii.
    Yao S; Zhou R; Jin Y; Huang J; Wu C
    Food Res Int; 2019 Jul; 121():348-358. PubMed ID: 31108757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism for Restoration of Fertility in Hybrid Zygosaccharomyces rouxii Generated by Interspecies Hybridization.
    Watanabe J; Uehara K; Mogi Y; Tsukioka Y
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomics Reveals the Effect of Strain Interactions on the Growth of
    Liu Z; Fu B; Wang J; Li W; Hu Y; Liu Z; Fu C; Li D; Wang C; Xu N
    J Agric Food Chem; 2023 Apr; 71(14):5525-5534. PubMed ID: 36989392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of mating and mating-type-specific genes in Zygosaccharomyces sp. yeast.
    Ogata T; Kuroki K
    Yeast; 2021 Aug; 38(8):471-479. PubMed ID: 33811363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.
    Dakal TC; Solieri L; Giudici P
    Int J Food Microbiol; 2014 Aug; 185():140-57. PubMed ID: 24973621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a
    Wang Y; Wang X; Jiang P; Dai L; Hu Y; Pan B; Li Y; Zhang J; Zhang R; Zhan S; Li Z
    Food Sci Nutr; 2024 Jun; 12(6):4435-4442. PubMed ID: 38873477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and transcriptomic analyses revealed the change of main flavor substance of
    Pei R; Lv G; Guo B; Li Y; Ai M; He B; Wan R
    Front Nutr; 2022; 9():990380. PubMed ID: 36091253
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.