BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31731966)

  • 1. Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate.
    Yang J; Im Y; Kim TH; Lee MJ; Cho S; Na JG; Lee J; Oh BK
    Enzyme Microb Technol; 2020 Jan; 132():109437. PubMed ID: 31731966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production.
    Yang J; Son JH; Kim H; Cho S; Na JG; Yeon YJ; Lee J
    Microb Cell Fact; 2019 Oct; 18(1):168. PubMed ID: 31601210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of ARTP Mutation and Adaptive Laboratory Evolution to Reveal 1,4-Butanediol Degradation in Pseudomonas putida KT2440.
    Qian X; Xin K; Zhang L; Zhou J; Xu A; Dong W; Jiang M
    Microbiol Spectr; 2023 Jun; 11(3):e0498822. PubMed ID: 37067433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors.
    Hernandez-Arranz S; Perez-Gil J; Marshall-Sabey D; Rodriguez-Concepcion M
    Microb Cell Fact; 2019 Sep; 18(1):152. PubMed ID: 31500633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
    Kim SJ; Kim JW; Lee YG; Park YC; Seo JH
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial production of mevalonate.
    Wang CH; Hou J; Deng HK; Wang LJ
    J Biotechnol; 2023 Jun; 370():1-11. PubMed ID: 37209831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing cellular fitness and product yields in Pseudomonas putida through an engineered phosphoketolase shunt.
    Bruinsma L; Martin-Pascual M; Kurnia K; Tack M; Hendriks S; van Kranenburg R; Dos Santos VAPM
    Microb Cell Fact; 2023 Jan; 22(1):14. PubMed ID: 36658566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Engineering of
    Liu Y; Cen X; Liu D; Chen Z
    ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Engineering of
    Qin N; Zhu F; Liu Y; Liu D; Chen Z
    ACS Synth Biol; 2024 Jan; 13(1):351-357. PubMed ID: 38110368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli.
    Lee S; Kim B; Park K; Um Y; Lee J
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane.
    Gong T; Xu X; Che Y; Liu R; Gao W; Zhao F; Yu H; Liang J; Xu P; Song C; Yang C
    Sci Rep; 2017 Aug; 7(1):7064. PubMed ID: 28765600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of novel bacteria for the 2,3-butanediol production.
    Kallbach M; Horn S; Kuenz A; Prüße U
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1025-1033. PubMed ID: 27687995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis.
    Dias BDC; Lima MEDNV; Vollú RE; da Mota FF; da Silva AJR; de Castro AM; Freire DMG; Seldin L
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8773-8782. PubMed ID: 30121751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.
    Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM
    Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol.
    Liu J; Chan SHJ; Brock-Nannestad T; Chen J; Lee SY; Solem C; Jensen PR
    Metab Eng; 2016 Jul; 36():57-67. PubMed ID: 26969254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid.
    Graf N; Altenbuchner J
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):137-49. PubMed ID: 24136472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.