BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31731968)

  • 1. Case study of xylose conversion to glycolate in Corynebacterium glutamicum: Current limitation and future perspective of the CRISPR-Cas systems.
    Lee SS; Park J; Heo YB; Woo HM
    Enzyme Microb Technol; 2020 Jan; 132():109395. PubMed ID: 31731968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a.
    Liu W; Tang D; Wang H; Lian J; Huang L; Xu Z
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8911-8922. PubMed ID: 31583448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconversion of Xylose to Ethylene Glycol and Glycolate in Engineered
    Lee SS; Choi JI; Woo HM
    ACS Omega; 2019 Dec; 4(25):21279-21287. PubMed ID: 31867522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Corynebacterium glutamicum for glycolate production.
    Zahoor A; Otten A; Wendisch VF
    J Biotechnol; 2014 Dec; 192 Pt B():366-75. PubMed ID: 24486442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.
    Cho JS; Choi KR; Prabowo CPS; Shin JH; Yang D; Jang J; Lee SY
    Metab Eng; 2017 Jul; 42():157-167. PubMed ID: 28649005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas12a Mediated Genome Editing To Introduce Amino Acid Substitutions into the Mechanosensitive Channel MscCG of
    Krumbach K; Sonntag CK; Eggeling L; Marienhagen J
    ACS Synth Biol; 2019 Dec; 8(12):2726-2734. PubMed ID: 31790583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production.
    Yoon J; Woo HM
    Biotechnol Bioeng; 2018 Aug; 115(8):2067-2074. PubMed ID: 29704438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
    Buschke N; Becker J; Schäfer R; Kiefer P; Biedendieck R; Wittmann C
    Biotechnol J; 2013 May; 8(5):557-70. PubMed ID: 23447448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing of Corynebacterium glutamicum mediated with Cpf1 plus Ku/LigD.
    Yang FY; Wei N; Zhang ZH; Wang M; Liu YC; Zhang LF; Gu F
    Biotechnol Lett; 2021 Dec; 43(12):2273-2281. PubMed ID: 34669078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced production of D-pantothenic acid in Corynebacterium glutamicum using an efficient CRISPR-Cpf1 genome editing method.
    Su R; Wang T; Bo T; Cai N; Yuan M; Wu C; Jiang H; Peng H; Chen N; Li Y
    Microb Cell Fact; 2023 Jan; 22(1):3. PubMed ID: 36609377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose.
    Li Z; Dong Y; Liu Y; Cen X; Liu D; Chen Z
    Metab Eng; 2022 Mar; 70():79-88. PubMed ID: 35038553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of Corynebacterium glutamicum for Consolidated Conversion of Hemicellulosic Biomass into Xylonic Acid.
    Yim SS; Choi JW; Lee SH; Jeon EJ; Chung WJ; Jeong KJ
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28799725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Optimization of CRISPR/Cas9-based multiplex base editing in
    Lu H; Zhang Q; Yu S; Wang Y; Kang M; Han S; Liu Y; Wang M
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):780-795. PubMed ID: 35234398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.