These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31731973)

  • 1. Self-assembly of lipase hybrid nanoflowers with bifunctional Ca
    Zhang Y; Sun W; Elfeky NM; Wang Y; Zhao D; Zhou H; Wang J; Bao Y
    Enzyme Microb Technol; 2020 Jan; 132():109408. PubMed ID: 31731973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes.
    Lee HR; Chung M; Kim MI; Ha SH
    Enzyme Microb Technol; 2017 Oct; 105():24-29. PubMed ID: 28756857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp. ZY124.
    Zhang Y; Ji F; Wang J; Pu Z; Jiang B; Bao Y
    Extremophiles; 2018 Mar; 22(2):287-300. PubMed ID: 29332142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Preparation and catalytic properties of catalase-inorganic hybrid nanoflowers].
    Pang J; Jiang M; Liu Y; Li M; Sun J; Wang C; Li X
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4705-4718. PubMed ID: 36593204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance.
    Cui J; Zhao Y; Liu R; Zhong C; Jia S
    Sci Rep; 2016 Jun; 6():27928. PubMed ID: 27297609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.
    Li K; Wang J; He Y; Abdulrazaq MA; Yan Y
    J Biotechnol; 2018 Sep; 281():87-98. PubMed ID: 29928917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression and truncation of a novel cold-adapted lipase with improved enzymatic characteristics.
    Zhang Y; Gao Y; Chen J; Yu F; Bao Y
    Protein Expr Purif; 2024 Feb; 214():106376. PubMed ID: 37839629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of copper-Brevibacterium cholesterol oxidase hybrid nanoflowers.
    Hao M; Fan G; Zhang Y; Xin Y; Zhang L
    Int J Biol Macromol; 2019 Apr; 126():539-548. PubMed ID: 30593816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of thermophilic lipase in inorganic hybrid nanoflower through biomimetic mineralization.
    Liu Y; Shao X; Kong D; Li G; Li Q
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111450. PubMed ID: 33181387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and Computational Analysis of Synthesis Conditions of Hybrid Nanoflowers for Lipase Immobilization.
    Souza DES; Santos LMF; Freitas JPA; Almeida LC; Santos JCB; Souza RL; Pereira MM; Lima ÁS; Soares CMF
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Optimize conditions and activities for neutrophil lipase immobilized by nano-silica dioxide].
    Jin J; Yang Y; Wu K; Wang H; Liu B; Yu Z
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):2003-7. PubMed ID: 20352981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a Multienzymatic Cascade Reaction System of Coimmobilized Hybrid Nanoflowers for Efficient Conversion of Starch into Gluconic Acid.
    Han J; Luo P; Wang L; Wu J; Li C; Wang Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15023-15033. PubMed ID: 32156109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved catalytic properties of Penicillium notatum lipase immobilized in nanoscale silicone polymeric films.
    Rehman S; Wang P; Bhatti HN; Bilal M; Asgher M
    Int J Biol Macromol; 2017 Apr; 97():279-286. PubMed ID: 28089928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability.
    Altinkaynak C; Tavlasoglu S; Özdemir N; Ocsoy I
    Enzyme Microb Technol; 2016 Nov; 93-94():105-112. PubMed ID: 27702469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(carboxybetaine methacrylate)-functionalized magnetic composite particles: A biofriendly support for lipase immobilization.
    Qi H; Du Y; Hu G; Zhang L
    Int J Biol Macromol; 2018 Feb; 107(Pt B):2660-2666. PubMed ID: 29080821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of magnetic Fe3O4@SiO2 nanoparticles for immobilization of lipase.
    Liu W; Zhou F; Zhang XY; Li Y; Wang XY; Xu XM; Zhang YW
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3068-72. PubMed ID: 24734736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled organic-inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability.
    Nadar SS; Gawas SD; Rathod VK
    Int J Biol Macromol; 2016 Nov; 92():660-669. PubMed ID: 27343706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized magnetic lipase/Cu
    Anboo S; Lau SY; Kansedo J; Yap PS; Hadibarata T; Kamaruddin AH
    Heliyon; 2024 Mar; 10(6):e27348. PubMed ID: 38500986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of an immobilized lipase of Bacillus coagulans BTS-1.
    Kanwari SS; Srivastava M; Chimni SS; Ghazi IA; Kaushal RK; Joshi GK
    Acta Microbiol Immunol Hung; 2004; 51(1-2):57-73. PubMed ID: 15362288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization and characterisation of a lipase from a new source, Bacillus sp. ITP-001.
    Cabrera-Padilla RY; Albuquerque M; Figueiredo RT; Fricks AT; Franceschi E; Lima AS; A Dos Santos OA; Silva DP; Soares CM
    Bioprocess Biosyst Eng; 2013 Oct; 36(10):1385-94. PubMed ID: 23673896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.