BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31731975)

  • 1. N-linked glycosylation of thermostable lipase from Bacillus thermocatenulatus to improve organic solvent stability.
    Kajiwara S; Yamada R; Matsumoto T; Ogino H
    Enzyme Microb Technol; 2020 Jan; 132():109416. PubMed ID: 31731975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering surface hydrophobicity improves activity of Bacillus thermocatenulatus lipase 2 enzyme.
    Tang T; Yuan C; Hwang HT; Zhao X; Ramkrishna D; Liu D; Varma A
    Biotechnol J; 2015 Sep; 10(11):1762-9. PubMed ID: 26097135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-level expression of a lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase.
    Quyen DT; Schmidt-Dannert C; Schmid RD
    Protein Expr Purif; 2003 Mar; 28(1):102-10. PubMed ID: 12651113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.
    Kumar D; Parshad R; Gupta VK
    Int J Biol Macromol; 2014 May; 66():97-107. PubMed ID: 24534493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution.
    Kawata T; Ogino H
    Biotechnol Prog; 2009; 25(6):1605-11. PubMed ID: 19731302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris.
    Han M; Wang X; Ding H; Jin M; Yu L; Wang J; Yu X
    Enzyme Microb Technol; 2014 Jan; 54():32-7. PubMed ID: 24267565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel thermostable and organic solvent-tolerant lipase from Xanthomonas oryzae pv. oryzae YB103: screening, purification and characterization.
    Mo Q; Liu A; Guo H; Zhang Y; Li M
    Extremophiles; 2016 Mar; 20(2):157-65. PubMed ID: 26791383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein engineering of Bacillus thermocatenulatus lipase via deletion of the α5 helix.
    Goodarzi N; Karkhane AA; Mirlohi A; Tabandeh F; Torktas I; Aminzadeh S; Yakhchali B; Shamsara M; Ghafouri MA
    Appl Biochem Biotechnol; 2014 Sep; 174(1):339-51. PubMed ID: 25064134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the structural properties of the active conformation BTL2 of a lipase from Geobacillus thermocatenulatus in toluene using molecular dynamic simulations and engineering BTL2 via in-silico mutation.
    Yenenler A; Venturini A; Burduroglu HC; Sezerman OU
    J Mol Model; 2018 Aug; 24(9):229. PubMed ID: 30097767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of Thermostability, Organic Solvent, and pH Stability in
    Ishak SNH; Masomian M; Kamarudin NHA; Ali MSM; Leow TC; Rahman RNZRA
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoalkalophilic lipase of Bacillus thermocatenulatus large-scale production, purification and properties: aggregation behaviour and its effect on activity.
    Rúa ML; Schmidt-Dannert C; Wahl S; Sprauer A; Schmid RD
    J Biotechnol; 1997 Aug; 56(2):89-102. PubMed ID: 9304872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol.
    Gihaz S; Kanteev M; Pazy Y; Fishman A
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding thermal and organic solvent stability of thermoalkalophilic lipases: insights from computational predictions and experiments.
    Shehata M; Timucin E; Venturini A; Sezerman OU
    J Mol Model; 2020 May; 26(6):122. PubMed ID: 32383051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of an organic solvent-tolerant bacterium Bacillus licheniformis PAL05 that is able to secrete solvent-stable lipase.
    Anbu P; Hur BK
    Biotechnol Appl Biochem; 2014; 61(5):528-34. PubMed ID: 24397298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secretory Overexpression of Bacillus thermocatenulatus Lipase in Saccharomyces cerevisiae Using Combinatorial Library Strategy.
    Kajiwara S; Yamada R; Ogino H
    Biotechnol J; 2018 Aug; 13(8):e1700409. PubMed ID: 29637708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conserved lid tryptophan, W211, potentiates thermostability and thermoactivity in bacterial thermoalkalophilic lipases.
    Timucin E; Sezerman OU
    PLoS One; 2013; 8(12):e85186. PubMed ID: 24391996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the impact of mutations on the specific activity of Bacillus thermocatenulatus lipase using a combined approach of docking and molecular dynamics.
    Yukselen O; Timucin E; Sezerman U
    J Mol Recognit; 2016 Oct; 29(10):466-75. PubMed ID: 27074770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose.
    Fernandez-Lorente G; Godoy CA; Mendes AA; Lopez-Gallego F; Grazu V; de Las Rivas B; Palomo JM; Hermoso J; Fernandez-Lafuente R; Guisan JM
    Biomacromolecules; 2008 Sep; 9(9):2553-61. PubMed ID: 18702542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the effect of F17A mutation on characteristics of Bacillus thermocatenulatus lipase expressed in Pichia pastoris using in silico and experimental methods.
    Karimi E; Karkhane AA; Yakhchali B; Shamsara M; Aminzadeh S; Torktaz I; Hosseini M; Safari Z
    Biotechnol Appl Biochem; 2014; 61(3):264-73. PubMed ID: 24641104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in-silico modeling of enzyme-substrate complex.
    Durmaz E; Kuyucak S; Sezerman UO
    Protein Eng Des Sel; 2013 May; 26(5):325-33. PubMed ID: 23424251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.