BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31732245)

  • 1. Rapid determination of cadmium in rice by portable dielectric barrier discharge-atomic emission spectrometer.
    Jiang J; Li Z; Wang Y; Zhang X; Yu K; Zhang H; Zhang J; Gao J; Liu X; Zhang H; Wu W; Li N
    Food Chem; 2020 Apr; 310():125824. PubMed ID: 31732245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring the trace metals concentration in rice by flame atomic absorption spectrometer and inductively coupled plasma atomic emission spectrometer.
    Singh N; Kayal N; Gupta PK; Agrawal AK
    J Environ Sci Eng; 2010 Jan; 52(1):33-6. PubMed ID: 21114104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-assisted Fenton digestion of rice for the determination of trace cadmium by hydride generation atomic fluorescence spectrometry.
    Yu H; Ai X; Xu K; Zheng C; Hou X
    Analyst; 2016 Feb; 141(4):1512-8. PubMed ID: 26759832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for the determination of Pb, Cd, Zn, Mn and Fe in rice samples using carbon nanotubes and cationic complexes of batophenanthroline.
    Feist B; Sitko R
    Food Chem; 2018 May; 249():38-44. PubMed ID: 29407929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method applied in determination and assessment of trace amount of lead and cadmium in rice from four provinces, China.
    Li S; Wang M; Yang B; Zhong Y; Feng L
    PLoS One; 2014; 9(9):e107733. PubMed ID: 25251454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy.
    Yang P; Zhou R; Zhang W; Yi R; Tang S; Guo L; Hao Z; Li X; Lu Y; Zeng X
    Food Chem; 2019 Jan; 272():323-328. PubMed ID: 30309550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Determination of lead and cadmium in rapeseed and rapeseed meal with microwave digestion by graphite furnace atomic absorption spectrometry].
    He XM; Wang M; Wang XD; Xue AF; Sheng-Qing L; Chen H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2353-6. PubMed ID: 18260430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection.
    Huber CS; Vale MGR; Dessuy MB; Svoboda M; Musil S; Dědina J
    Talanta; 2017 Dec; 175():406-412. PubMed ID: 28842009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonthermal Optical Emission Spectrometry: Direct Atomization and Excitation of Cadmium for Highly Sensitive Determination.
    Cai Y; Zhang YJ; Wu DF; Yu YL; Wang JH
    Anal Chem; 2016 Apr; 88(8):4192-5. PubMed ID: 27030025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic and cadmium contents in Brazilian rice from different origins can vary more than two orders of magnitude.
    Kato LS; De Nadai Fernandes EA; Raab A; Bacchi MA; Feldmann J
    Food Chem; 2019 Jul; 286():644-650. PubMed ID: 30827659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Canonical discriminant analysis of cadmium content levels in unpolished rice using a portable near-infrared spectrometer.
    Kumagai M; Ohisa N; Amano T; Ogawa N
    Anal Sci; 2003 Nov; 19(11):1553-5. PubMed ID: 14640458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Certification of the cadmium content in certified reference materials for Cd rice flour.
    Zhao MT; Wang J; Lu B; Lu H
    Rapid Commun Mass Spectrom; 2005; 19(7):910-4. PubMed ID: 15747321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Variation of Cd, Zn and Se contents of polished rice and the potential health risk for subsistence-diet farmers from typical areas of South China].
    Zhang LY; Li LQ; Pan GX
    Huan Jing Ke Xue; 2009 Sep; 30(9):2792-7. PubMed ID: 19927842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Rapid analysis of toxic heavy metals in foods for emergency response to health crisis].
    Nomura C; Obana H; Oda H
    Shokuhin Eiseigaku Zasshi; 2009 Oct; 50(5):253-5. PubMed ID: 19897952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development and Validation of Simultaneous Analysis of Minerals and Toxic Elements in Foods by ICP-MS].
    Yutani A; Kishi E; Ozaki A; Shinya M; Ooshima T; Yamano T
    Shokuhin Eiseigaku Zasshi; 2016; 57(2):57-65. PubMed ID: 27211920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk.
    Al-Saleh I; Abduljabbar M
    Int J Hyg Environ Health; 2017 Oct; 220(7):1168-1178. PubMed ID: 28780210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Electrothermal atomic absorption determination of arsenic in plants and plant products].
    Karpova EA; Malysheva AG; Ermakov AA; Sidorenkova NK
    Gig Sanit; 2012; (1):78-81. PubMed ID: 22712335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-laboratory validation of an inexpensive streamlined method to measure inorganic arsenic in rice grain.
    Chaney RL; Green CE; Lehotay SJ
    Anal Bioanal Chem; 2018 Sep; 410(22):5703-5710. PubMed ID: 29725731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Reducing cadmium content of rice grains by means of flooding and a few problems].
    Kawasaki A; Arao T; Ishikawa S
    Nihon Eiseigaku Zasshi; 2012; 67(4):478-83. PubMed ID: 23095358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Report on the levels of cadmium, lead, and mercury in imported rice grain samples.
    Al-Saleh I; Shinwari N
    Biol Trace Elem Res; 2001 Oct; 83(1):91-6. PubMed ID: 11694006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.