These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31732258)

  • 1. A Distinct Class of Bursting Neurons with Strong Gamma Synchronization and Stimulus Selectivity in Monkey V1.
    Onorato I; Neuenschwander S; Hoy J; Lima B; Rocha KS; Broggini AC; Uran C; Spyropoulos G; Klon-Lipok J; Womelsdorf T; Fries P; Niell C; Singer W; Vinck M
    Neuron; 2020 Jan; 105(1):180-197.e5. PubMed ID: 31732258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct feedforward and feedback pathways for cell-type specific attention effects.
    Spyropoulos G; Schneider M; van Kempen J; Gieselmann MA; Thiele A; Vinck M
    Neuron; 2024 Jul; 112(14):2423-2434.e7. PubMed ID: 38759641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations.
    Chen G; Zhang Y; Li X; Zhao X; Ye Q; Lin Y; Tao HW; Rasch MJ; Zhang X
    Neuron; 2017 Dec; 96(6):1403-1418.e6. PubMed ID: 29268099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Top-Down Beta Enhances Bottom-Up Gamma.
    Richter CG; Thompson WH; Bosman CA; Fries P
    J Neurosci; 2017 Jul; 37(28):6698-6711. PubMed ID: 28592697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation selectivity and noise correlation in awake monkey area V1 are modulated by the gamma cycle.
    Womelsdorf T; Lima B; Vinck M; Oostenveld R; Singer W; Neuenschwander S; Fries P
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4302-7. PubMed ID: 22371570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythm and Synchrony in a Cortical Network Model.
    Chariker L; Shapley R; Young LS
    J Neurosci; 2018 Oct; 38(40):8621-8634. PubMed ID: 30120205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual Stimulus Content in V4 Is Conveyed by Gamma-Rhythmic Information Packages.
    Lisitsyn D; Grothe I; Kreiter AK; Ernst UA
    J Neurosci; 2020 Dec; 40(50):9650-9662. PubMed ID: 33158967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma Synchronization between V1 and V4 Improves Behavioral Performance.
    Rohenkohl G; Bosman CA; Fries P
    Neuron; 2018 Nov; 100(4):953-963.e3. PubMed ID: 30318415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial attention in area V4 is mediated by circuits in primary visual cortex.
    Tiesinga PH; Buia CI
    Neural Netw; 2009 Oct; 22(8):1039-54. PubMed ID: 19643574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Areas V1 and V2 show microsaccade-related 3-4-Hz covariation in gamma power and frequency.
    Lowet E; Roberts MJ; Bosman CA; Fries P; De Weerd P
    Eur J Neurosci; 2016 May; 43(10):1286-96. PubMed ID: 26547390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gamma-Rhythmic Gain Modulation.
    Ni J; Wunderle T; Lewis CM; Desimone R; Diester I; Fries P
    Neuron; 2016 Oct; 92(1):240-251. PubMed ID: 27667008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory Units: An Organizing Nidus for Feature-Selective SubNetworks in Area V1.
    Palagina G; Meyer JF; Smirnakis SM
    J Neurosci; 2019 Jun; 39(25):4931-4944. PubMed ID: 30979814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical gamma band synchronization through somatostatin interneurons.
    Veit J; Hakim R; Jadi MP; Sejnowski TJ; Adesnik H
    Nat Neurosci; 2017 Jul; 20(7):951-959. PubMed ID: 28481348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.
    Folias SE; Yu S; Snyder A; Nikolić D; Rubin JE
    Eur J Neurosci; 2013 Sep; 38(6):2864-83. PubMed ID: 23837724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive changes in neuronal synchronization in macaque V4.
    Wang Y; Iliescu BF; Ma J; Josić K; Dragoi V
    J Neurosci; 2011 Sep; 31(37):13204-13. PubMed ID: 21917803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large Visual Stimuli Induce Two Distinct Gamma Oscillations in Primate Visual Cortex.
    Murty DVPS; Shirhatti V; Ravishankar P; Ray S
    J Neurosci; 2018 Mar; 38(11):2730-2744. PubMed ID: 29440388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronous and asynchronous bursting states: role of intrinsic neural dynamics.
    Takekawa T; Aoyagi T; Fukai T
    J Comput Neurosci; 2007 Oct; 23(2):189-200. PubMed ID: 17387606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory-driven and spontaneous gamma oscillations engage distinct cortical circuitry.
    Welle CG; Contreras D
    J Neurophysiol; 2016 Apr; 115(4):1821-35. PubMed ID: 26719085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stabilized supralinear network accounts for the contrast dependence of visual cortical gamma oscillations.
    Holt CJ; Miller KD; Ahmadian Y
    PLoS Comput Biol; 2024 Jun; 20(6):e1012190. PubMed ID: 38935792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma-phase shifting in awake monkey visual cortex.
    Vinck M; Lima B; Womelsdorf T; Oostenveld R; Singer W; Neuenschwander S; Fries P
    J Neurosci; 2010 Jan; 30(4):1250-7. PubMed ID: 20107053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.