BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31732260)

  • 21. A comprehensive review on the application of novel disruption techniques for proteins release from microalgae.
    Timira V; Meki K; Li Z; Lin H; Xu M; Pramod SN
    Crit Rev Food Sci Nutr; 2022; 62(16):4309-4325. PubMed ID: 33480267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization.
    Vuppaladadiyam AK; Yao JG; Florin N; George A; Wang X; Labeeuw L; Jiang Y; Davis RW; Abbas A; Ralph P; Fennell PS; Zhao M
    ChemSusChem; 2018 Jan; 11(2):334-355. PubMed ID: 29165921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.
    Miazek K; Kratky L; Sulc R; Jirout T; Aguedo M; Richel A; Goffin D
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28677659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative study on effective cell disruption methods for lipid extraction from microalgae.
    Prabakaran P; Ravindran AD
    Lett Appl Microbiol; 2011 Aug; 53(2):150-4. PubMed ID: 21575021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current Bottlenecks and Challenges of the Microalgal Biorefinery.
    Gifuni I; Pollio A; Safi C; Marzocchella A; Olivieri G
    Trends Biotechnol; 2019 Mar; 37(3):242-252. PubMed ID: 30301572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Force and energy requirement for microalgal cell disruption: an atomic force microscope evaluation.
    Lee AK; Lewis DM; Ashman PJ
    Bioresour Technol; 2013 Jan; 128():199-206. PubMed ID: 23196239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth and metabolic characteristics of oleaginous microalgal isolates from Nilgiri biosphere Reserve of India.
    Thangavel K; Radha Krishnan P; Nagaiah S; Kuppusamy S; Chinnasamy S; Rajadorai JS; Nellaiappan Olaganathan G; Dananjeyan B
    BMC Microbiol; 2018 Jan; 18(1):1. PubMed ID: 29433435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bead milling disruption kinetics of microalgae: Process modeling, optimization and application to biomolecules recovery from Chlorella sorokiniana.
    Zinkoné TR; Gifuni I; Lavenant L; Pruvost J; Marchal L
    Bioresour Technol; 2018 Nov; 267():458-465. PubMed ID: 30036846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into cell wall disintegration of Chlorella vulgaris.
    Weber S; Grande PM; Blank LM; Klose H
    PLoS One; 2022; 17(1):e0262500. PubMed ID: 35030225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities.
    Van Den Hende S; Vervaeren H; Boon N
    Biotechnol Adv; 2012; 30(6):1405-24. PubMed ID: 22425735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraction of Carotenoids and Fat-Soluble Vitamins from
    Chronopoulou L; Dal Bosco C; Di Caprio F; Prosini L; Gentili A; Pagnanelli F; Palocci C
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31315224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth and lipid accumulation properties of microalgal Phaeodactylum tricornutum under different gas liquid ratios.
    Song M; Pei H; Hu W; Han F; Ji Y; Ma G; Han L
    Bioresour Technol; 2014 Aug; 165():31-7. PubMed ID: 24780103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas.
    Zhu X; Rong J; Chen H; He C; Hu W; Wang Q
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2073-82. PubMed ID: 26754812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel cell disruption technique to enhance lipid extraction from microalgae.
    Steriti A; Rossi R; Concas A; Cao G
    Bioresour Technol; 2014 Jul; 164():70-7. PubMed ID: 24836708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Utilization of Marine Microalgae for Enhanced Co-Production of Multiple Compounds.
    Ma R; Wang B; Chua ET; Zhao X; Lu K; Ho SH; Shi X; Liu L; Xie Y; Lu Y; Chen J
    Mar Drugs; 2020 Sep; 18(9):. PubMed ID: 32948074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review.
    Miazek K; Brozek-Pluska B
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental evaluation of flocculation efficiency in the separation of the microalgal biomass of Scenedesmus sp. cultivated in full-scale photobioreactors.
    Scherer MD; Filho FJCM; Oliveira AC; Selesu NFH; Ugaya CML; Mariano AB; Vargas JVC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Aug; 53(10):938-945. PubMed ID: 29764286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of pigment extraction from B. braunii pretreated using CO2 rapid depressurization.
    Uquiche E; Antilaf I; Millao S
    Braz J Microbiol; 2016; 47(2):497-505. PubMed ID: 26991281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How myristyltrimethylammonium bromide enhances biomass harvesting and pigments extraction from Synechocystis sp. PCC 6803.
    Zhou Y; Lai YS; Eustance E; Straka L; Zhou C; Xia S; Rittmann BE
    Water Res; 2017 Dec; 126():189-196. PubMed ID: 28957695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell disruption for microalgae biorefineries.
    Günerken E; D'Hondt E; Eppink MH; Garcia-Gonzalez L; Elst K; Wijffels RH
    Biotechnol Adv; 2015; 33(2):243-60. PubMed ID: 25656098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.