BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31732505)

  • 1. A Novel
    Iosue CL; Gulotta AP; Selhorst KB; Mody AC; Barbour KM; Marcotte MJ; Bui LN; Leone SG; Lang EC; Hughes GH; Wykoff DD
    G3 (Bethesda); 2020 Jan; 10(1):321-331. PubMed ID: 31732505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyruvate decarboxylase and thiamine biosynthetic genes are regulated differently by Pdc2 in S. cerevisiae and C. glabrata.
    Iosue CL; Ugras JM; Bajgain Y; Dottor CA; Stauffer PL; Hopkins RA; Lang EC; Wykoff DD
    PLoS One; 2023; 18(6):e0286744. PubMed ID: 37285346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.
    Iosue CL; Attanasio N; Shaik NF; Neal EM; Leone SG; Cali BJ; Peel MT; Grannas AM; Wykoff DD
    PLoS One; 2016; 11(3):e0152042. PubMed ID: 27015653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of THI and PDC genes by Pdc2 in Nakaseomyces glabratus (Candida glabrata) is complex.
    Dottor CA; Iosue CL; Loshnowsky AM; Hopkins RA; Stauffer PL; Ugras JM; Spagnuola JC; Kraut DA; Wykoff DD
    G3 (Bethesda); 2024 Jun; ():. PubMed ID: 38861404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway.
    He BZ; Zhou X; O'Shea EK
    Elife; 2017 May; 6():. PubMed ID: 28485712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Changes in Yeast Phosphatase Families Allow for Specialization in Phosphate and Thiamine Starvation.
    Nahas JV; Iosue CL; Shaik NF; Selhorst K; He BZ; Wykoff DD
    G3 (Bethesda); 2018 Jul; 8(7):2333-2343. PubMed ID: 29748198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo generation of a phosphate starvation-regulated promoter in Candida glabrata.
    Kerwin CL; Wykoff DD
    FEMS Yeast Res; 2012 Dec; 12(8):980-9. PubMed ID: 22938599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that Ergosterol Biosynthesis Modulates Activity of the Pdr1 Transcription Factor in Candida glabrata.
    Vu BG; Thomas GH; Moye-Rowley WS
    mBio; 2019 Jun; 10(3):. PubMed ID: 31186322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glycosylphosphatidylinositol-linked aspartyl protease Yps1 is transcriptionally regulated by the calcineurin-Crz1 and Slt2 MAPK pathways in Candida glabrata.
    Miyazaki T; Izumikawa K; Yamauchi S; Inamine T; Nagayoshi Y; Saijo T; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Miyazaki Y; Yasuoka A; Kohno S
    FEMS Yeast Res; 2011 Aug; 11(5):449-56. PubMed ID: 21501380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida glabrata PHO4 is necessary and sufficient for Pho2-independent transcription of phosphate starvation genes.
    Kerwin CL; Wykoff DD
    Genetics; 2009 Jun; 182(2):471-9. PubMed ID: 19332882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulation of iron homeostasis in the fungal human pathogen
    Devaux F; Thiébaut A
    Microbiology (Reading); 2019 Oct; 165(10):1041-1060. PubMed ID: 31050635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation.
    Calcagno AM; Bignell E; Warn P; Jones MD; Denning DW; Mühlschlegel FA; Rogers TR; Haynes K
    Mol Microbiol; 2003 Nov; 50(4):1309-18. PubMed ID: 14622417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple interfaces control activity of the Candida glabrata Pdr1 transcription factor mediating azole drug resistance.
    Moye-Rowley WS
    Curr Genet; 2019 Feb; 65(1):103-108. PubMed ID: 30056490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
    Gerwien F; Safyan A; Wisgott S; Hille F; Kaemmer P; Linde J; Brunke S; Kasper L; Hube B
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae.
    Mojzita D; Hohmann S
    Mol Genet Genomics; 2006 Aug; 276(2):147-61. PubMed ID: 16850348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive autoregulation and repression of transactivation are key regulatory features of the Candida glabrata Pdr1 transcription factor.
    Khakhina S; Simonicova L; Moye-Rowley WS
    Mol Microbiol; 2018 Mar; 107(6):747-764. PubMed ID: 29363861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel acid phosphatase in Candida glabrata suggests selective pressure and niche specialization in the phosphate signal transduction pathway.
    Orkwis BR; Davies DL; Kerwin CL; Sanglard D; Wykoff DD
    Genetics; 2010 Nov; 186(3):885-95. PubMed ID: 20739710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.
    Nishikawa JL; Boeszoermenyi A; Vale-Silva LA; Torelli R; Posteraro B; Sohn YJ; Ji F; Gelev V; Sanglard D; Sanguinetti M; Sadreyev RI; Mukherjee G; Bhyravabhotla J; Buhrlage SJ; Gray NS; Wagner G; Näär AM; Arthanari H
    Nature; 2016 Feb; 530(7591):485-9. PubMed ID: 26886795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata.
    Lelandais G; Tanty V; Geneix C; Etchebest C; Jacq C; Devaux F
    Genome Biol; 2008; 9(11):R164. PubMed ID: 19025642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in Candida glabrata.
    Gallegos-García V; Pan SJ; Juárez-Cepeda J; Ramírez-Zavaleta CY; Martin-del-Campo MB; Martínez-Jiménez V; Castaño I; Cormack B; De Las Peñas A
    Genetics; 2012 Apr; 190(4):1285-97. PubMed ID: 22234857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.