These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 31732612)
1. Using Electronic Health Record Data to Rapidly Identify Children with Glomerular Disease for Clinical Research. Denburg MR; Razzaghi H; Bailey LC; Soranno DE; Pollack AH; Dharnidharka VR; Mitsnefes MM; Smoyer WE; Somers MJG; Zaritsky JJ; Flynn JT; Claes DJ; Dixon BP; Benton M; Mariani LH; Forrest CB; Furth SL J Am Soc Nephrol; 2019 Dec; 30(12):2427-2435. PubMed ID: 31732612 [TBL] [Abstract][Full Text] [Related]
2. Using a Multi-Institutional Pediatric Learning Health System to Identify Systemic Lupus Erythematosus and Lupus Nephritis: Development and Validation of Computable Phenotypes. Wenderfer SE; Chang JC; Goodwin Davies A; Luna IY; Scobell R; Sears C; Magella B; Mitsnefes M; Stotter BR; Dharnidharka VR; Nowicki KD; Dixon BP; Kelton M; Flynn JT; Gluck C; Kallash M; Smoyer WE; Knight A; Sule S; Razzaghi H; Bailey LC; Furth SL; Forrest CB; Denburg MR; Atkinson MA Clin J Am Soc Nephrol; 2022 Jan; 17(1):65-74. PubMed ID: 34732529 [TBL] [Abstract][Full Text] [Related]
3. Development and evaluation of an EHR-based computable phenotype for identification of pediatric Crohn's disease patients in a National Pediatric Learning Health System. Khare R; Kappelman MD; Samson C; Pyrzanowski J; Darwar RA; Forrest CB; Bailey CC; Margolis P; Dempsey A; Learn Health Syst; 2020 Oct; 4(4):e10243. PubMed ID: 33083542 [TBL] [Abstract][Full Text] [Related]
4. Development and evaluation of a computable phenotype to identify pediatric patients with leukemia and lymphoma treated with chemotherapy using electronic health record data. Phillips CA; Razzaghi H; Aglio T; McNeil MJ; Salvesen-Quinn M; Sopfe J; Wilkes JJ; Forrest CB; Bailey LC Pediatr Blood Cancer; 2019 Sep; 66(9):e27876. PubMed ID: 31207054 [TBL] [Abstract][Full Text] [Related]
5. Validating a Computable Phenotype for Nephrotic Syndrome in Children and Adults Using PCORnet Data. Oliverio AL; Marchel D; Troost JP; Ayoub I; Almaani S; Greco J; Tran CL; Denburg MR; Matheny M; Dorn C; Massengill SF; Desmond H; Gipson DS; Mariani LH Kidney360; 2021 Dec; 2(12):1979-1986. PubMed ID: 35419531 [TBL] [Abstract][Full Text] [Related]
7. Identifying Patients with Rare Disease Using Electronic Health Record Data: The Kaiser Permanente Southern California Membranous Nephropathy Cohort. Sun AZ; Shu YH; Harrison TN; Hever A; Jacobsen SJ; O'Shaughnessy MM; Sim JJ Perm J; 2020; 24():. PubMed ID: 32069207 [TBL] [Abstract][Full Text] [Related]
8. Identification and Validation of a Sickle Cell Disease Cohort Within Electronic Health Records. Michalik DE; Taylor BW; Panepinto JA Acad Pediatr; 2017 Apr; 17(3):283-287. PubMed ID: 27979750 [TBL] [Abstract][Full Text] [Related]
9. Distribution of glomerular diseases in Taiwan: preliminary report of National Renal Biopsy Registry-publication on behalf of Taiwan Society of Nephrology. Chiu HF; Chen HC; Lu KC; Shu KH; BMC Nephrol; 2018 Jan; 19(1):6. PubMed ID: 29320993 [TBL] [Abstract][Full Text] [Related]
10. Is there really an increase in non-minimal change nephrotic syndrome in children? Filler G; Young E; Geier P; Carpenter B; Drukker A; Feber J Am J Kidney Dis; 2003 Dec; 42(6):1107-13. PubMed ID: 14655180 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of an Algorithm for Identifying Ocular Conditions in Electronic Health Record Data. Stein JD; Rahman M; Andrews C; Ehrlich JR; Kamat S; Shah M; Boese EA; Woodward MA; Cowall J; Trager EH; Narayanaswamy P; Hanauer DA JAMA Ophthalmol; 2019 May; 137(5):491-497. PubMed ID: 30789656 [TBL] [Abstract][Full Text] [Related]
13. Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record. Jamian L; Wheless L; Crofford LJ; Barnado A Arthritis Res Ther; 2019 Dec; 21(1):305. PubMed ID: 31888720 [TBL] [Abstract][Full Text] [Related]
14. Accuracy of phenotyping chronic rhinosinusitis in the electronic health record. Hsu J; Pacheco JA; Stevens WW; Smith ME; Avila PC Am J Rhinol Allergy; 2014; 28(2):140-4. PubMed ID: 24717952 [TBL] [Abstract][Full Text] [Related]
15. Validation of an algorithm to identify children with biopsy-proven celiac disease from within health administrative data: An assessment of health services utilization patterns in Ontario, Canada. Chan J; Mack DR; Manuel DG; Mojaverian N; de Nanassy J; Benchimol EI PLoS One; 2017; 12(6):e0180338. PubMed ID: 28662204 [TBL] [Abstract][Full Text] [Related]
16. Pathology of childhood nephrotic syndrome in northern Nigeria. Abdurrahman MB; Edington GM; Narayana TP; Babaoye FA Trop Geogr Med; 1981 Sep; 33(3):269-73. PubMed ID: 7314240 [TBL] [Abstract][Full Text] [Related]
18. Development and validation of a computable phenotype for Turner syndrome utilizing electronic health records from a national pediatric network. Huang SD; Bamba V; Bothwell S; Fechner PY; Furniss A; Ikomi C; Nahata L; Nokoff NJ; Pyle L; Seyoum H; Davis SM Am J Med Genet A; 2024 Apr; 194(4):e63495. PubMed ID: 38066696 [TBL] [Abstract][Full Text] [Related]
19. Determining diagnosis date of diabetes using structured electronic health record (EHR) data: the SEARCH for diabetes in youth study. Lenoir KM; Wagenknecht LE; Divers J; Casanova R; Dabelea D; Saydah S; Pihoker C; Liese AD; Standiford D; Hamman R; Wells BJ; BMC Med Res Methodol; 2021 Oct; 21(1):210. PubMed ID: 34629073 [TBL] [Abstract][Full Text] [Related]
20. Positive predictive value and sensitivity of ICD-9-CM codes for identifying pediatric leukemia. Weinmann S; Francisco MC; Kwan ML; Bowles EJA; Rahm AK; Greenlee RT; Stout NK; Pole JD; Kushi LH; Smith-Bindman R; Miglioretti DL Pediatr Blood Cancer; 2022 Feb; 69(2):e29383. PubMed ID: 34773439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]