These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31732748)

  • 41. Structure of the Cyclin T binding domain of Hexim1 and molecular basis for its recognition of P-TEFb.
    Dames SA; Schönichen A; Schulte A; Barboric M; Peterlin BM; Grzesiek S; Geyer M
    Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14312-7. PubMed ID: 17724342
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR.
    Sedore SC; Byers SA; Biglione S; Price JP; Maury WJ; Price DH
    Nucleic Acids Res; 2007; 35(13):4347-58. PubMed ID: 17576689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP.
    Olson SW; Turner AW; Arney JW; Saleem I; Weidmann CA; Margolis DM; Weeks KM; Mustoe AM
    Mol Cell; 2022 May; 82(9):1708-1723.e10. PubMed ID: 35320755
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution of 7SK RNA and its protein partners in metazoa.
    Marz M; Donath A; Verstraete N; Nguyen VT; Stadler PF; Bensaude O
    Mol Biol Evol; 2009 Dec; 26(12):2821-30. PubMed ID: 19734296
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Substrate Specificity of the Kinase P-TEFb towards the RNA Polymerase II C-Terminal Domain.
    Gibbs EB; Laremore TN; Usher GA; Portz B; Cook EC; Showalter SA
    Biophys J; 2017 Nov; 113(9):1909-1911. PubMed ID: 28992937
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reconstitution of a functional 7SK snRNP.
    Brogie JE; Price DH
    Nucleic Acids Res; 2017 Jun; 45(11):6864-6880. PubMed ID: 28431135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
    Schlundt A; Tants JN; Sattler M
    Methods; 2017 Apr; 118-119():119-136. PubMed ID: 28315749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription.
    Barboric M; Yik JH; Czudnochowski N; Yang Z; Chen R; Contreras X; Geyer M; Matija Peterlin B; Zhou Q
    Nucleic Acids Res; 2007; 35(6):2003-12. PubMed ID: 17341462
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HIV-1 Tat interactions with cellular 7SK and viral TAR RNAs identifies dual structural mimicry.
    Pham VV; Salguero C; Khan SN; Meagher JL; Brown WC; Humbert N; de Rocquigny H; Smith JL; D'Souza VM
    Nat Commun; 2018 Oct; 9(1):4266. PubMed ID: 30323330
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation.
    Faust TB; Li Y; Bacon CW; Jang GM; Weiss A; Jayaraman B; Newton BW; Krogan NJ; D'Orso I; Frankel AD
    Elife; 2018 May; 7():. PubMed ID: 29845934
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA-driven cyclin-dependent kinase regulation: when CDK9/cyclin T subunits of P-TEFb meet their ribonucleoprotein partners.
    Michels AA; Bensaude O
    Biotechnol J; 2008 Aug; 3(8):1022-32. PubMed ID: 18655042
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 7SKiing on chromatin: Move globally, act locally.
    D'Orso I
    RNA Biol; 2016 Jun; 13(6):545-53. PubMed ID: 27128603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of P-TEFb elongation complex activity by CDK9 acetylation.
    Fu J; Yoon HG; Qin J; Wong J
    Mol Cell Biol; 2007 Jul; 27(13):4641-51. PubMed ID: 17452463
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.
    Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM
    Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit.
    Ujvári A; Luse DS
    Nat Struct Mol Biol; 2006 Jan; 13(1):49-54. PubMed ID: 16327806
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction.
    Keramati F; Seyedjafari E; Fallah P; Soleimani M; Ghanbarian H
    Tumour Biol; 2015 Apr; 36(4):2809-14. PubMed ID: 25492483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. HEXIM1 forms a transcriptionally abortive complex with glucocorticoid receptor without involving 7SK RNA and positive transcription elongation factor b.
    Shimizu N; Ouchida R; Yoshikawa N; Hisada T; Watanabe H; Okamoto K; Kusuhara M; Handa H; Morimoto C; Tanaka H
    Proc Natl Acad Sci U S A; 2005 Jun; 102(24):8555-60. PubMed ID: 15941832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HEXIM1-binding elements on mRNAs identified through transcriptomic SELEX and computational screening.
    Fujimoto Y; Nakamura Y; Ohuchi S
    Biochimie; 2012 Sep; 94(9):1900-9. PubMed ID: 22609015
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism.
    Hasler D; Meister G; Fischer U
    RNA Biol; 2021 Feb; 18(2):290-303. PubMed ID: 32401147
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity.
    Stein AJ; Fuchs G; Fu C; Wolin SL; Reinisch KM
    Cell; 2005 May; 121(4):529-539. PubMed ID: 15907467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.