BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31733023)

  • 1. SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials.
    Wang X; Guo L
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4231-4239. PubMed ID: 31733023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement.
    Wang X; Zhang E; Shi H; Tao Y; Ren X
    Analyst; 2022 Mar; 147(7):1257-1272. PubMed ID: 35253817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metal-free SERS: mechanisms and applications.
    Jin S; Zhang D; Yang B; Guo S; Chen L; Jung YM
    Analyst; 2023 Dec; 149(1):11-28. PubMed ID: 38051259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiconductor-enhanced Raman scattering: active nanomaterials and applications.
    Han XX; Ji W; Zhao B; Ozaki Y
    Nanoscale; 2017 Apr; 9(15):4847-4861. PubMed ID: 28150834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer.
    Liu Y; Ma H; Han XX; Zhao B
    Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Development of SERS Technology: Semiconductor-Based Study.
    Yang B; Jin S; Guo S; Park Y; Chen L; Zhao B; Jung YM
    ACS Omega; 2019 Dec; 4(23):20101-20108. PubMed ID: 31815210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect engineering in semiconductor-based SERS.
    Song G; Cong S; Zhao Z
    Chem Sci; 2022 Feb; 13(5):1210-1224. PubMed ID: 35222907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications.
    Wang H; Jiang X; He Y
    Analyst; 2016 Aug; 141(17):5010-9. PubMed ID: 27414500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and defect engineering of molybdenum oxides and their SERS applications.
    Gu C; Li D; Zeng S; Jiang T; Shen X; Zhang H
    Nanoscale; 2021 Mar; 13(11):5620-5651. PubMed ID: 33688873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect.
    Yang L; Peng Y; Yang Y; Liu J; Huang H; Yu B; Zhao J; Lu Y; Huang Z; Li Z; Lombardi JR
    Adv Sci (Weinh); 2019 Jun; 6(12):1900310. PubMed ID: 31380169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection.
    Tan X; Melkersson J; Wu S; Wang L; Zhang J
    Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiconductor SERS of diamond.
    Gao Y; Gao N; Li H; Yuan X; Wang Q; Cheng S; Liu J
    Nanoscale; 2018 Aug; 10(33):15788-15792. PubMed ID: 30095838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remarkable SERS Activity Observed from Amorphous ZnO Nanocages.
    Wang X; Shi W; Jin Z; Huang W; Lin J; Ma G; Li S; Guo L
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9851-9855. PubMed ID: 28651039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-Enhanced Raman Scattering on Hierarchical Porous Cuprous Oxide Nanostructures in Nanoshell and Thin-Film Geometries.
    Qiu C; Zhang L; Wang H; Jiang C
    J Phys Chem Lett; 2012 Mar; 3(5):651-7. PubMed ID: 26286162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability.
    Sun H; Cong S; Zheng Z; Wang Z; Chen Z; Zhao Z
    J Am Chem Soc; 2019 Jan; 141(2):870-878. PubMed ID: 30566339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphonon resonant Raman scattering (MRRS) of semiconductor nanomaterials for biodetection.
    Hong X; Chu X; Liu Y
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9357-67. PubMed ID: 22413216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. W
    Li M; Fan X; Gao Y; Qiu T
    J Phys Chem Lett; 2019 Jul; 10(14):4038-4044. PubMed ID: 31265302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Raman Enhancement in Molybdenum Disulfide by Tuning the Interlayer Spacing.
    Li X; Guo S; Su J; Ren X; Fang Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28474-28483. PubMed ID: 32468820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing.
    Karthick Kannan P; Shankar P; Blackman C; Chung CH
    Adv Mater; 2019 Aug; 31(34):e1803432. PubMed ID: 30773698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities.
    Zhang M; Wang Y; Ma Y; Wang X; Zhao B; Ruan W
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120288. PubMed ID: 34455383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.