BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31733249)

  • 1. In situ and real-time insight into Rhizopus chinensis lipase under high pressure and temperature: Conformational traits and biobehavioural analysis.
    Chen G; Zhang Q; Chen H; Lu Q; Miao M; Campanella OH; Feng B
    Int J Biol Macromol; 2020 Jul; 154():1314-1323. PubMed ID: 31733249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of pressure-induced lid movement and catalysis behavior of Rhizopus chinensis lipase.
    Chen G; Tang J; Miao M; Jiang B; Jin J; Feng B
    Int J Biol Macromol; 2017 Oct; 103():360-365. PubMed ID: 28472692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled effects of salt and pressure on catalytic ability of Rhizopus chinensis lipase.
    Chen G; Wang L; Miao M; Jia C; Feng B
    J Sci Food Agric; 2017 Dec; 97(15):5381-5387. PubMed ID: 28500670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection effect of polyols on Rhizopus chinensis lipase counteracting the deactivation from high pressure and high temperature treatment.
    Chen G; Zhang Q; Lu Q; Feng B
    Int J Biol Macromol; 2019 Apr; 127():555-562. PubMed ID: 30664969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phenylalanine dynamic switch controls the interfacial activation of Rhizopus chinensis lipase.
    Wang S; Xu Y; Yu XW
    Int J Biol Macromol; 2021 Mar; 173():1-12. PubMed ID: 33476612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Basis by Which the N-Terminal Polypeptide Segment of
    Zhang M; Yu XW; Xu Y; Guo RT; Swapna GVT; Szyperski T; Hunt JF; Montelione GT
    Biochemistry; 2019 Sep; 58(38):3943-3954. PubMed ID: 31436959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.
    Yu XW; Tan NJ; Xiao R; Xu Y
    PLoS One; 2012; 7(10):e46388. PubMed ID: 23056295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris.
    Yang M; Yu XW; Zheng H; Sha C; Zhao C; Qian M; Xu Y
    Microb Cell Fact; 2015 Mar; 14():40. PubMed ID: 25880561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of an extracellular acid-resistant lipase produced by Rhizopus javanicus.
    Uyttenbroeck W; Hendriks D; Vriend G; De Baere I; Moens L; Scharpé S
    Biol Chem Hoppe Seyler; 1993 Apr; 374(4):245-54. PubMed ID: 8329142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase.
    Alam P; Rabbani G; Badr G; Badr BM; Khan RH
    Cell Biochem Biophys; 2015 Mar; 71(2):1199-206. PubMed ID: 25424356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Met93 and Thr96 in the lid hinge region of Rhizopus chinensis lipase.
    Zhu SS; Li M; Yu X; Xu Y
    Appl Biochem Biotechnol; 2013 May; 170(2):436-47. PubMed ID: 23546870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosslinked aggregates of Rhizopus oryzae lipase as industrial biocatalysts: preparation, optimization, characterization, and application for enantioselective resolution reactions.
    Kartal F; Kilinc A
    Biotechnol Prog; 2012 Jul; 28(4):937-45. PubMed ID: 22685034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propeptide in
    Wang S; Xu Y; Yu XW
    J Agric Food Chem; 2021 Apr; 69(14):4263-4275. PubMed ID: 33797235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-Glycosylation Engineering to Improve the Constitutive Expression of Rhizopus oryzae Lipase in Komagataella phaffii.
    Yu XW; Yang M; Jiang C; Zhang X; Xu Y
    J Agric Food Chem; 2017 Jul; 65(29):6009-6015. PubMed ID: 28681607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of the optimum temperature of lipase activity for Rhizopus niveus by random mutagenesis and its structural interpretation.
    Kohno M; Enatsu M; Funatsu J; Yoshiizumi M; Kugimiya W
    J Biotechnol; 2001 May; 87(3):203-10. PubMed ID: 11334664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of activities and conformation of lipases treated with sub- and supercritical carbon dioxide.
    Chen D; Peng C; Zhang H; Yan Y
    Appl Biochem Biotechnol; 2013 Apr; 169(7):2189-201. PubMed ID: 23417391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Increasing activity of Rhizopus chinensis CCTCC M201021 lipase by directed evolution-error prone PCR].
    Wang R; Yu X; Sha C; Xu Y
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):1892-9. PubMed ID: 20352965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of lipase II from Rhizopus niveus at 2.2 A resolution.
    Kohno M; Funatsu J; Mikami B; Kugimiya W; Matsuo T; Morita Y
    J Biochem; 1996 Sep; 120(3):505-10. PubMed ID: 8902613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies of Rhizopus oryzae lipase using monomolecular film technique.
    Ben Salah A; Sayari A; Verger R; Gargouri Y
    Biochimie; 2001 Jun; 83(6):463-9. PubMed ID: 11506890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in the activity of Rhizopus delemar lipase on water-soluble esters by its binding with phosphatidylcholine.
    Shimada Y; Tominaga Y; Iwai M; Tsujisaka Y
    J Biochem; 1983 Jun; 93(6):1655-60. PubMed ID: 6885742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.