These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
833 related articles for article (PubMed ID: 31733251)
21. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796 [TBL] [Abstract][Full Text] [Related]
22. [Preparation of silk fibroin-chitosan scaffolds and their properties]. Zhang P; Wang W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1517-22. PubMed ID: 24640377 [TBL] [Abstract][Full Text] [Related]
23. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837 [TBL] [Abstract][Full Text] [Related]
24. Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers. Mobini S; Taghizadeh-Jahed M; Khanmohammadi M; Moshiri A; Naderi MM; Heidari-Vala H; Ashrafi Helan J; Khanjani S; Springer A; Akhondi MM; Kazemnejad S J Biomater Appl; 2016 Jan; 30(6):793-809. PubMed ID: 26475850 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation. Tong S; Xu DP; Liu ZM; Du Y; Wang XK J Craniofac Surg; 2016 Mar; 27(2):509-15. PubMed ID: 26890455 [TBL] [Abstract][Full Text] [Related]
26. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
27. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Lima PA; Resende CX; Soares GD; Anselme K; Almeida LE Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3389-95. PubMed ID: 23706225 [TBL] [Abstract][Full Text] [Related]
28. Tissue response and biodegradation of composite scaffolds prepared from Thai silk fibroin, gelatin and hydroxyapatite. Tungtasana H; Shuangshoti S; Shuangshoti S; Kanokpanont S; Kaplan DL; Bunaprasert T; Damrongsakkul S J Mater Sci Mater Med; 2010 Dec; 21(12):3151-62. PubMed ID: 20976530 [TBL] [Abstract][Full Text] [Related]
29. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295 [TBL] [Abstract][Full Text] [Related]
30. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. Zhang K; Qian Y; Wang H; Fan L; Huang C; Yin A; Mo X J Biomed Mater Res A; 2010 Dec; 95(3):870-81. PubMed ID: 20824649 [TBL] [Abstract][Full Text] [Related]
31. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319 [TBL] [Abstract][Full Text] [Related]
32. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Chomchalao P; Pongcharoen S; Sutheerawattananonda M; Tiyaboonchai W Biomed Eng Online; 2013 Apr; 12():28. PubMed ID: 23566031 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195 [TBL] [Abstract][Full Text] [Related]
34. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite. Xiao H; Huang W; Xiong K; Ruan S; Yuan C; Mo G; Tian R; Zhou S; She R; Ye P; Liu B; Deng J Int J Nanomedicine; 2019; 14():2011-2027. PubMed ID: 30962685 [TBL] [Abstract][Full Text] [Related]
35. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications. Zhang H; Liu X; Yang M; Zhu L Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():8-13. PubMed ID: 26117733 [TBL] [Abstract][Full Text] [Related]
36. Silk-Based 3D Porous Scaffolds for Tissue Engineering. Xiao M; Yao J; Shao Z; Chen X ACS Biomater Sci Eng; 2024 May; 10(5):2827-2840. PubMed ID: 38690985 [TBL] [Abstract][Full Text] [Related]
37. Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. Lv Q; Feng Q J Mater Sci Mater Med; 2006 Dec; 17(12):1349-56. PubMed ID: 17143767 [TBL] [Abstract][Full Text] [Related]
38. Fabrication and evaluation of non-mulberry silk fibroin fiber reinforced chitosan based porous composite scaffold for cartilage tissue engineering. Singh BN; Pramanik K Tissue Cell; 2018 Dec; 55():83-90. PubMed ID: 30503064 [TBL] [Abstract][Full Text] [Related]
39. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. Maji K; Dasgupta S; Pramanik K; Bissoyi A Mater Sci Eng C Mater Biol Appl; 2018 May; 86():83-94. PubMed ID: 29525100 [TBL] [Abstract][Full Text] [Related]
40. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]