These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. The physical, mechanical, and biological properties of silk fibroin/chitosan/reduced graphene oxide composite membranes for guided bone regeneration. Jabbari F; Hesaraki S; Houshmand B J Biomater Sci Polym Ed; 2019 Dec; 30(18):1779-1802. PubMed ID: 31506050 [TBL] [Abstract][Full Text] [Related]
43. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. Khan MN; Islam JM; Khan MA J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185 [TBL] [Abstract][Full Text] [Related]
44. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Kavya KC; Jayakumar R; Nair S; Chennazhi KP Int J Biol Macromol; 2013 Aug; 59():255-63. PubMed ID: 23591473 [TBL] [Abstract][Full Text] [Related]
45. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Zhang XY; Chen YP; Han J; Mo J; Dong PF; Zhuo YH; Feng Y Int J Biol Macromol; 2019 Sep; 136():1247-1257. PubMed ID: 31247228 [TBL] [Abstract][Full Text] [Related]
46. Carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds for bone tissue engineering applications. Lemos R; Maia FR; Ribeiro VP; Costa JB; Coutinho PJG; Reis RL; Oliveira JM J Mater Chem B; 2021 Dec; 9(46):9561-9574. PubMed ID: 34761792 [TBL] [Abstract][Full Text] [Related]
47. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells. Li DW; Lei X; He FL; He J; Liu YL; Ye YJ; Deng X; Duan E; Yin DC Int J Biol Macromol; 2017 Dec; 105(Pt 1):584-597. PubMed ID: 28802849 [TBL] [Abstract][Full Text] [Related]
48. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
49. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
50. High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Keirouz A; Zakharova M; Kwon J; Robert C; Koutsos V; Callanan A; Chen X; Fortunato G; Radacsi N Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110939. PubMed ID: 32409085 [TBL] [Abstract][Full Text] [Related]
51. Balanced electrostatic blending approach--an alternative to chemical crosslinking of Thai silk fibroin/gelatin scaffold. Jetbumpenkul P; Amornsudthiwat P; Kanokpanont S; Damrongsakkul S Int J Biol Macromol; 2012 Jan; 50(1):7-13. PubMed ID: 21983026 [TBL] [Abstract][Full Text] [Related]
52. L-polylactic acid porous microspheres enhance the mechanical properties and in vivo stability of degummed silk/silk fibroin/gelatin scaffold. Li T; Liu B; Jiang Y; Lou Y; Chen K; Zhang D Biomed Mater; 2020 Dec; 16(1):015025. PubMed ID: 33181491 [TBL] [Abstract][Full Text] [Related]
53. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation. Cengiz IF; Pereira H; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM J Mater Sci Mater Med; 2019 May; 30(6):63. PubMed ID: 31127379 [TBL] [Abstract][Full Text] [Related]
55. Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds. She Z; Liu W; Feng Q Biomed Mater; 2009 Aug; 4(4):045014. PubMed ID: 19671956 [TBL] [Abstract][Full Text] [Related]
56. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application. Hajiabbas M; Alemzadeh I; Vossoughi M Carbohydr Polym; 2020 Oct; 245():116465. PubMed ID: 32718603 [TBL] [Abstract][Full Text] [Related]
57. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering. Zhou H; Wang Z; Cao H; Hu H; Luo Z; Yang X; Cui M; Zhou L J Biomater Sci Polym Ed; 2019 Dec; 30(17):1604-1619. PubMed ID: 31438806 [TBL] [Abstract][Full Text] [Related]
58. Is Dialdehyde Chitosan a Good Substance to Modify Physicochemical Properties of Biopolymeric Materials? Grabska-Zielińska S; Sionkowska A; Olewnik-Kruszkowska E; Reczyńska K; Pamuła E Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33806219 [TBL] [Abstract][Full Text] [Related]
60. Preparation of porous scaffolds from silk fibroin extracted from the silk gland of Bombyx mori (B. mori). Yang M; Shuai Y; He W; Min S; Zhu L Int J Mol Sci; 2012; 13(6):7762-7775. PubMed ID: 22837725 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]