These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31733252)
1. Antifungal activities of LysM-domain multimers and their fusion chitinases. Takashima T; Sunagawa R; Uechi K; Taira T Int J Biol Macromol; 2020 Jul; 154():1295-1302. PubMed ID: 31733252 [TBL] [Abstract][Full Text] [Related]
2. A new type of plant chitinase containing LysM domains from a fern (Pteris ryukyuensis): roles of LysM domains in chitin binding and antifungal activity. Onaga S; Taira T Glycobiology; 2008 May; 18(5):414-23. PubMed ID: 18310304 [TBL] [Abstract][Full Text] [Related]
3. A class III chitinase without disulfide bonds from the fern, Pteris ryukyuensis: crystal structure and ligand-binding studies. Kitaoku Y; Umemoto N; Ohnuma T; Numata T; Taira T; Sakuda S; Fukamizo T Planta; 2015 Oct; 242(4):895-907. PubMed ID: 25998529 [TBL] [Abstract][Full Text] [Related]
4. Designing a new chitinase with more chitin binding and antifungal activity. Matroodi S; Motallebi M; Zamani M; Moradyar M World J Microbiol Biotechnol; 2013 Aug; 29(8):1517-23. PubMed ID: 23515962 [TBL] [Abstract][Full Text] [Related]
5. Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. Itoh Y; Kawase T; Nikaidou N; Fukada H; Mitsutomi M; Watanabe T; Itoh Y Biosci Biotechnol Biochem; 2002 May; 66(5):1084-92. PubMed ID: 12092819 [TBL] [Abstract][Full Text] [Related]
6. Substrate specificity and antifungal activity of recombinant tobacco class I chitinases. Suarez V; Staehelin C; Arango R; Holtorf H; Hofsteenge J; Meins F Plant Mol Biol; 2001 Mar; 45(5):609-18. PubMed ID: 11414619 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of the Antifungal Activity of Chitinase by Palmitoylation and the Synergy of Palmitoylated Chitinase with Amphotericin B. Santoso P; Minamihata K; Ishimine Y; Taniguchi H; Komada T; Sato R; Goto M; Takashima T; Taira T; Kamiya N ACS Infect Dis; 2022 May; 8(5):1051-1061. PubMed ID: 35471825 [TBL] [Abstract][Full Text] [Related]
8. Protein engineering of chit42 towards improvement of chitinase and antifungal activities. Kowsari M; Motallebi M; Zamani M Curr Microbiol; 2014 Apr; 68(4):495-502. PubMed ID: 24322404 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the involvement of chitin-binding domain of ChiCW in antifungal activity, and engineering a novel chimeric chitinase with high enzyme and antifungal activities. Huang CJ; Guo SH; Chung SC; Lin YJ; Chen CY J Microbiol Biotechnol; 2009 Oct; 19(10):1169-75. PubMed ID: 19884776 [TBL] [Abstract][Full Text] [Related]
11. Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action. Landim PGC; Correia TO; Silva FDA; Nepomuceno DR; Costa HPS; Pereira HM; Lobo MDP; Moreno FBMB; Brandão-Neto J; Medeiros SC; Vasconcelos IM; Oliveira JTA; Sousa BL; Barroso-Neto IL; Freire VN; Carvalho CPS; Monteiro-Moreira ACO; Grangeiro TB Biochimie; 2017 Apr; 135():89-103. PubMed ID: 28153694 [TBL] [Abstract][Full Text] [Related]
12. Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls. Taira T; Ohnuma T; Yamagami T; Aso Y; Ishiguro M; Ishihara M Biosci Biotechnol Biochem; 2002 May; 66(5):970-7. PubMed ID: 12092848 [TBL] [Abstract][Full Text] [Related]
13. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Iseli B; Boller T; Neuhaus JM Plant Physiol; 1993 Sep; 103(1):221-6. PubMed ID: 8208848 [TBL] [Abstract][Full Text] [Related]
14. Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength. Taira T; Ohdomari A; Nakama N; Shimoji M; Ishihara M Biosci Biotechnol Biochem; 2005 Apr; 69(4):811-8. PubMed ID: 15849422 [TBL] [Abstract][Full Text] [Related]
15. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. Limón MC; Margolles-Clark E; Benítez T; Penttilä M FEMS Microbiol Lett; 2001 Apr; 198(1):57-63. PubMed ID: 11325554 [TBL] [Abstract][Full Text] [Related]
16. Structure and Enzymatic Properties of a Two-Domain Family GH19 Chitinase from Japanese Cedar ( Cryptomeria japonica) Pollen. Takashima T; Numata T; Taira T; Fukamizo T; Ohnuma T J Agric Food Chem; 2018 Jun; 66(22):5699-5706. PubMed ID: 29756783 [TBL] [Abstract][Full Text] [Related]
17. Importance of Trp59 and Trp60 in chitin-binding, hydrolytic, and antifungal activities of Streptomyces griseus chitinase C. Itoh Y; Watanabe J; Fukada H; Mizuno R; Kezuka Y; Nonaka T; Watanabe T Appl Microbiol Biotechnol; 2006 Oct; 72(6):1176-84. PubMed ID: 16598448 [TBL] [Abstract][Full Text] [Related]
18. Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties. Li Z; Xia C; Wang Y; Li X; Qiao Y; Li C; Zhou J; Zhang L; Ye X; Huang Y; Cui Z Int J Biol Macromol; 2019 Jul; 132():1235-1243. PubMed ID: 30980875 [TBL] [Abstract][Full Text] [Related]
19. Improved catalytic and antifungal activities of Bacillus thuringiensis cells with surface display of Chi9602ΔSP. Tang M; Sun X; Zhang S; Wan J; Li L; Ni H J Appl Microbiol; 2017 Jan; 122(1):106-118. PubMed ID: 27782360 [TBL] [Abstract][Full Text] [Related]
20. Structure of full-length class I chitinase from rice revealed by X-ray crystallography and small-angle X-ray scattering. Kezuka Y; Kojima M; Mizuno R; Suzuki K; Watanabe T; Nonaka T Proteins; 2010 Aug; 78(10):2295-305. PubMed ID: 20544965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]