BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31733428)

  • 1. Ligand-dependent inequivalence of the α and β subunits of ferric human hemoglobin bound to haptoglobin.
    Ascenzi P; De Simone G; Ciaccio C; Coletta M
    J Inorg Biochem; 2020 Jan; 202():110814. PubMed ID: 31733428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoride and azide binding to ferric human hemoglobin:haptoglobin complexes highlights the ligand-dependent inequivalence of the α and β hemoglobin chains.
    Ascenzi P; di Masi A; De Simone G; Gioia M; Coletta M
    J Biol Inorg Chem; 2019 Mar; 24(2):247-255. PubMed ID: 30706146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive nitrosylation of ferric human hemoglobin bound to human haptoglobin 1-1 and 2-2.
    Ascenzi P; De Simone G; Polticelli F; Gioia M; Coletta M
    J Biol Inorg Chem; 2018 May; 23(3):437-445. PubMed ID: 29605886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of cyanide and carbon monoxide dissociation from ferrous human haptoglobin:hemoglobin(II) complexes.
    Ascenzi P; De Simone G; Tundo GR; Coletta M
    J Biol Inorg Chem; 2020 May; 25(3):351-360. PubMed ID: 32146510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic inequivalence between α and β subunits of ligand dissociation from ferrous nitrosylated human haptoglobin:hemoglobin complexes. A comparison with O
    Ascenzi P; De Simone G; Pasquadibisceglie A; Gioia M; Coletta M
    J Inorg Biochem; 2021 Jan; 214():111272. PubMed ID: 33129126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen dissociation from ferrous oxygenated human hemoglobin:haptoglobin complexes confirms that in the R-state α and β chains are functionally heterogeneous.
    Ascenzi P; Polticelli F; Coletta M
    Sci Rep; 2019 May; 9(1):6780. PubMed ID: 31043649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxynitrite Detoxification by Human Haptoglobin:Hemoglobin Complexes: A Comparative Study.
    Ascenzi P; Coletta M
    J Phys Chem B; 2018 Dec; 122(49):11100-11107. PubMed ID: 30040419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptoglobin: From hemoglobin scavenging to human health.
    di Masi A; De Simone G; Ciaccio C; D'Orso S; Coletta M; Ascenzi P
    Mol Aspects Med; 2020 Jun; 73():100851. PubMed ID: 32660714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: a thermodynamic, kinetic and X-ray crystallographic study.
    Bolognesi M; Boffi A; Coletta M; Mozzarelli A; Pesce A; Tarricone C; Ascenzi P
    J Mol Biol; 1999 Aug; 291(3):637-50. PubMed ID: 10448042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haptoglobin phenotypes differ in their ability to inhibit heme transfer from hemoglobin to LDL.
    Bamm VV; Tsemakhovich VA; Shaklai M; Shaklai N
    Biochemistry; 2004 Apr; 43(13):3899-906. PubMed ID: 15049697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Hp1-1 and Hp2-2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toxicity.
    Lipiski M; Deuel JW; Baek JH; Engelsberger WR; Buehler PW; Schaer DJ
    Antioxid Redox Signal; 2013 Nov; 19(14):1619-33. PubMed ID: 23418677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The human protein haptoglobin inhibits IsdH-mediated heme-sequestering by
    Mikkelsen JH; Runager K; Andersen CBF
    J Biol Chem; 2020 Feb; 295(7):1781-1791. PubMed ID: 31819010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin.
    Mollan TL; Jia Y; Banerjee S; Wu G; Kreulen RT; Tsai AL; Olson JS; Crumbliss AL; Alayash AI
    Free Radic Biol Med; 2014 Apr; 69():265-77. PubMed ID: 24486321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative mass spectrometry defines an oxidative hotspot in hemoglobin that is specifically protected by haptoglobin.
    Pimenova T; Pereira CP; Gehrig P; Buehler PW; Schaer DJ; Zenobi R
    J Proteome Res; 2010 Aug; 9(8):4061-70. PubMed ID: 20568812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced nitrite reductase activity associated with the haptoglobin complexed hemoglobin dimer: functional and antioxidative implications.
    Roche CJ; Dantsker D; Alayash AI; Friedman JM
    Nitric Oxide; 2012 Jun; 27(1):32-9. PubMed ID: 22521791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complexity of a complex trait locus: HP, HPR, haemoglobin and cholesterol.
    Guthrie PA; Rodriguez S; Gaunt TR; Lawlor DA; Smith GD; Day IN
    Gene; 2012 May; 499(1):8-13. PubMed ID: 22433445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haptoglobin preferentially binds β but not α subunits cross-linked hemoglobin tetramers with minimal effects on ligand and redox reactions.
    Jia Y; Wood F; Buehler PW; Alayash AI
    PLoS One; 2013; 8(3):e59841. PubMed ID: 23555800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on free or haptoglobin-bound hemoglobin and derivatives (semihemoglobins and porphyrinated semihemoglobins). Some aspects of their peroxidatic activity.
    Colson-Guastalla H; Aymard C; Chambon JP; Michel F
    Biochimie; 1975; 57(9):1035-44. PubMed ID: 1222141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of serum haptoglobin levels and Hp1-Hp2 polymorphism in the haptoglobin gene in patients with atrial fibrillation.
    Costa LBX; Martins GL; Duarte RCF; Rocha PL; Figueiredo EL; Silveira FR; das Graças Carvalho M; Reis HJ; Gomes KB; Ferreira CN
    Mol Biol Rep; 2022 Aug; 49(8):7359-7365. PubMed ID: 35576050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping of human hemoglobin by haptoglobin: molecular mechanisms and clinical applications.
    Ratanasopa K; Chakane S; Ilyas M; Nantasenamat C; Bulow L
    Antioxid Redox Signal; 2013 Jun; 18(17):2364-74. PubMed ID: 22900934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.