BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31733468)

  • 21. Arbuscular mycorrhizal fungi in chronically petroleum-contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination.
    Franco-Ramírez A; Ferrera-Cerrato R; Varela-Fregoso L; Pérez-Moreno J; Alarcón A
    J Basic Microbiol; 2007 Oct; 47(5):378-83. PubMed ID: 17910101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals.
    Park S; Kim KS; Kim JT; Kang D; Sung K
    J Environ Sci (China); 2011; 23(12):2034-41. PubMed ID: 22432335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Use of Leersia hexandra (Poaceae) for soil phytoremediation in soils contaminated with fresh and weathered oil].
    Arias-Trinidad A; Rivera-Cruz MC; Roldán-Garrigós A; Aceves-Navarro LA; Quintero-Lizaola R; Hernández-Guzmán J
    Rev Biol Trop; 2017 Mar; 65(1):21-30. PubMed ID: 29465955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant growth and arbuscular mycorrhizae development in oil sands processing by-products.
    Boldt-Burisch K; Naeth MA; Schneider U; Schneider B; Hüttl RF
    Sci Total Environ; 2018 Apr; 621():30-39. PubMed ID: 29175619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced degradation of petroleum hydrocarbons by immobilizing multiple bacteria on wheat bran biochar and its effect on greenhouse gas emission in saline-alkali soil.
    Guo S; Liu X; Tang J
    Chemosphere; 2022 Jan; 286(Pt 2):131663. PubMed ID: 34371357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential of biochar for hydrocarbon degradation of crude oil-contaminated soils.
    Saliu AO; Akinpelumi BE; Najeemdeen BA
    J Environ Qual; 2023; 52(5):1049-1059. PubMed ID: 37301542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of biochar immobilization of Serratia sp. F4 OR414381 on bioremediation of petroleum contamination and bacterial community composition in loess soil.
    Zhang X; Wu M; Zhang T; Gao H; Ou Y; Li M
    J Hazard Mater; 2024 May; 470():134137. PubMed ID: 38555671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The co-application of biochar with bioremediation for the removal of petroleum hydrocarbons from contaminated soil.
    Dike CC; Hakeem IG; Rani A; Surapaneni A; Khudur L; Shah K; Ball AS
    Sci Total Environ; 2022 Nov; 849():157753. PubMed ID: 35931161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation.
    Couto MN; Monteiro E; Vasconcelos MT
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1339-46. PubMed ID: 20229281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses.
    Gaskin SE; Bentham RH
    Sci Total Environ; 2010 Aug; 408(17):3683-8. PubMed ID: 20569970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone.
    Euliss K; Ho CH; Schwab AP; Rock S; Banks MK
    Bioresour Technol; 2008 Apr; 99(6):1961-71. PubMed ID: 17531475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochar-based materials as remediation strategy in petroleum hydrocarbon-contaminated soil and water: Performances, mechanisms, and environmental impact.
    Wei Z; Wei Y; Liu Y; Niu S; Xu Y; Park JH; Wang JJ
    J Environ Sci (China); 2024 Apr; 138():350-372. PubMed ID: 38135402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth of zinnia, Italian ryegrass, and alfalfa and their remediation effects in diesel oil-contaminated soils.
    Ikeura H; Ozawa S; Tamaki M
    Int J Phytoremediation; 2019; 21(10):1005-1011. PubMed ID: 31020861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil.
    Bushnaf KM; Puricelli S; Saponaro S; Werner D
    J Contam Hydrol; 2011 Nov; 126(3-4):208-15. PubMed ID: 22115086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short-term biodegradation of petroleum in planted and unplanted sandy soil.
    Cartmill AD; Cartmill DL; Alarcón A
    J Environ Qual; 2013 Jul; 42(4):1080-5. PubMed ID: 24216359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions.
    McIntosh P; Schulthess CP; Kuzovkina YA; Guillard K
    Int J Phytoremediation; 2017 Aug; 19(8):755-764. PubMed ID: 28165761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.
    Ebadi A; Khoshkholgh Sima NA; Olamaee M; Hashemi M; Ghorbani Nasrabadi R
    J Environ Manage; 2018 Aug; 219():260-268. PubMed ID: 29751257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Petroleum hydrocarbon rhizoremediation and soil microbial activity improvement via cluster root formation by wild proteaceae plant species.
    Hoang SA; Lamb D; Seshadri B; Sarkar B; Cheng Y; Wang L; Bolan NS
    Chemosphere; 2021 Jul; 275():130135. PubMed ID: 33984915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Arbuscular mycorrhizal bioremediation and its mechanisms of organic pollutants-contaminated soils].
    Li Q; Ling W; Gao Y; Li F; Xiong W
    Ying Yong Sheng Tai Xue Bao; 2006 Nov; 17(11):2217-21. PubMed ID: 17269356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of PGPR Serratia marcescens BC-3 and AMF Glomus intraradices on phytoremediation of petroleum contaminated soil.
    Dong R; Gu L; Guo C; Xun F; Liu J
    Ecotoxicology; 2014 May; 23(4):674-80. PubMed ID: 24482052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.