BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31733495)

  • 1. Physical and biological removal of Microcystin-LR and other water contaminants in a biofilter using Manganese Dioxide coated sand and Graphene sand composites.
    Kumar P; Rehab H; Hegde K; Brar SK; Cledon M; Kermanshahi-Pour A; Vo Duy S; Sauvé S; Surampalli RY
    Sci Total Environ; 2020 Feb; 703():135052. PubMed ID: 31733495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-cost graphitized sand filter to deliver MC-LR-free potable water: Water treatment plants and household perspective.
    Kumar P; Cledon M; Brar SK
    Sci Total Environ; 2020 Dec; 747():141135. PubMed ID: 32795791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agro-industrial residues as a unique support in a sand filter to enhance the bioactivity to remove microcystin-Leucine aRginine and organics.
    Kumar P; Rubio HDP; Hegde K; Brar SK; Cledon M; Kermanshahi-Pour A; Sauvé S; Roy-Lachapelle A; Galvez-Cloutier R
    Sci Total Environ; 2019 Jun; 670():971-981. PubMed ID: 31018439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments.
    Pavagadhi S; Tang AL; Sathishkumar M; Loh KP; Balasubramanian R
    Water Res; 2013 Sep; 47(13):4621-9. PubMed ID: 23764611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous carbon for efficient removal of microcystin-LR in drinking water sources, Nak-Dong River, South Korea: Application to a field-scale drinking water treatment plant.
    Park JA; Jung SM; Choi JW; Kim JH; Hong S; Lee SH
    Chemosphere; 2018 Feb; 193():883-891. PubMed ID: 29874763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of microcystin-LR from spiked water using either activated carbon or anthracite as filter material.
    Drogui P; Daghrir R; Simard MC; Sauvageau C; Blais JF
    Environ Technol; 2012; 33(4-6):381-91. PubMed ID: 22629609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mn(II) removal from groundwater with manganese oxide-coated filter media.
    Piispanen JK; Sallanko JT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Nov; 45(13):1732-40. PubMed ID: 20924918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble manganese removal by porous media filtration.
    Kim J; Jung S
    Environ Technol; 2008 Dec; 29(12):1265-73. PubMed ID: 19149348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source.
    Park JA; Jung SM; Yi IG; Choi JW; Kim SB; Lee SH
    Chemosphere; 2017 Jun; 177():15-23. PubMed ID: 28279901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mn-doped carbon xerogels as catalyst in the removal of microcystin-LR by water-surface discharge plasma.
    Xin Q; Zhang Y; Wu KB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(3):293-9. PubMed ID: 23245304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene as a rational interface for enhanced adsorption of microcystin-LR from water.
    Roberts JL; Zetterholm SG; Gurtowski L; Fernando PAI; Evans A; Puhnaty J; Wyss KM; Tour JM; Fernando B; Jenness G; Thompson A; Griggs C
    J Hazard Mater; 2023 Sep; 458():131737. PubMed ID: 37453354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The transformation of microcystin-LR during tap water treatment process and analysis of its degradation products].
    Ding XL; Zhu PF; Huang CH; Zhang Q; Zhu JY; Liu WW; Zhou WJ
    Zhonghua Yu Fang Yi Xue Za Zhi; 2018 Sep; 52(9):898-903. PubMed ID: 30196635
    [No Abstract]   [Full Text] [Related]  

  • 13. Dataset of breakthrough time for various modified sand materials using Rhodamine-B as an adsorbate.
    Kumar P; Brar SK; Cledon M; Kermanshahi-Pour A; Galvez-Cloutier R
    Data Brief; 2019 Dec; 27():104751. PubMed ID: 31788510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective removal of trace thallium from surface water by nanosized manganese dioxide enhanced quartz sand filtration.
    Huangfu X; Ma C; Ma J; He Q; Yang C; Zhou J; Jiang J; Wang Y
    Chemosphere; 2017 Dec; 189():1-9. PubMed ID: 28918289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorptive removal of microcystin-LR from surface and wastewater using tyre-based powdered activated carbon: Kinetics and isotherms.
    Mashile PP; Mpupa A; Nomngongo PN
    Toxicon; 2018 Apr; 145():25-31. PubMed ID: 29501826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism.
    Cheng Y; Zhang S; Huang T; Li Y
    Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ electrochemical Fe(VI) for removal of microcystin-LR from drinking water: comparing dosing of the ferrate ion by electrochemical and chemical means.
    Dubrawski KL; Cataldo M; Dubrawski Z; Mazumder A; Wilkinson DP; Mohseni M
    J Water Health; 2018 Jun; 16(3):414-424. PubMed ID: 29952330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization on preparation of Fe
    He Y; Wu P; Li G; Li L; Yi J; Wang S; Lu S; Ding P; Chen C; Pan H
    Int J Biol Macromol; 2020 Aug; 156():1574-1583. PubMed ID: 31805328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of manganese-coated sand using SEM and EDAX analysis.
    Hu PY; Hsieh YH; Chen JC; Chang CY
    J Colloid Interface Sci; 2004 Apr; 272(2):308-13. PubMed ID: 15028491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling physiochemical adsorption with biodegradation for enhanced removal of microcystin-LR in water.
    Tang S; Zhang L; Zhu H; Jiang SC
    Sci Total Environ; 2024 Aug; 937():173370. PubMed ID: 38772489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.