These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31733538)

  • 1. Effect of citric acid and vermi-wash on growth and metal accumulation of Sorghum bicolor cultivated in lead and nickel contaminated soil.
    Rathika R; Khalifa AYZ; Srinivasan P; Praburaman L; Kamala-Kannan S; Selvankumar T; Kim W; Govarthanan M
    Chemosphere; 2020 Mar; 243():125327. PubMed ID: 31733538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress.
    Farid M; Ali S; Rizwan M; Saeed R; Tauqeer HM; Sallah-Ud-Din R; Azam A; Raza N
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21050-21064. PubMed ID: 28726228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system.
    Wang X; Chen C; Wang J
    Int J Phytoremediation; 2017 Apr; 19(4):402-412. PubMed ID: 27739906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic amendments impact the availability of heavy metal(loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor.
    Nawab J; Khan S; Aamir M; Shamshad I; Qamar Z; Din I; Huang Q
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2381-90. PubMed ID: 26411451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery.
    Gul I; Manzoor M; Kallerhoff J; Arshad M
    Chemosphere; 2020 Nov; 258():127405. PubMed ID: 32947677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C.
    Rajkumar M; Ma Y; Freitas H
    J Environ Manage; 2013 Oct; 128():973-80. PubMed ID: 23895909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants.
    Farid M; Ali S; Rizwan M; Ali Q; Abbas F; Bukhari SAH; Saeed R; Wu L
    Ecotoxicol Environ Saf; 2017 Nov; 145():90-102. PubMed ID: 28710950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils.
    Wu Z; Kong Z; Lu S; Huang C; Huang S; He Y; Wu L
    J Gen Appl Microbiol; 2019 Dec; 65(5):254-264. PubMed ID: 31243191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil.
    Ruley AT; Sharma NC; Sahi SV; Singh SR; Sajwan KS
    Environ Pollut; 2006 Nov; 144(1):11-8. PubMed ID: 16522347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils.
    Ali A; Guo D; Mahar A; Wang P; Ma F; Shen F; Li R; Zhang Z
    Ecotoxicol Environ Saf; 2017 May; 139():202-209. PubMed ID: 28135667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons.
    Steliga T; Kluk D
    Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular Mycorrhizal Fungi Favor the Initial Growth of Acacia mangium, Sorghum bicolor, and Urochloa brizantha in Soil Contaminated with Zn, Cu, Pb, and Cd.
    de Fátima Pedroso D; Barbosa MV; Dos Santos JV; Pinto FA; Siqueira JO; Carneiro MAC
    Bull Environ Contam Toxicol; 2018 Sep; 101(3):386-391. PubMed ID: 30066147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation of cadmium-contaminated soil by Sorghum bicolor and the variation of microbial community.
    Chen C; Wang X; Wang J
    Chemosphere; 2019 Nov; 235():985-994. PubMed ID: 31561315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages.
    Shakoor MB; Ali S; Hameed A; Farid M; Hussain S; Yasmeen T; Najeeb U; Bharwana SA; Abbasi GH
    Ecotoxicol Environ Saf; 2014 Nov; 109():38-47. PubMed ID: 25164201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compost and sulfur affect the mobilization and phyto-availability of Cd and Ni to sorghum and barnyard grass in a spiked fluvial soil.
    Shaheen SM; Balbaa AA; Khatab AM; Rinklebe J
    Environ Geochem Health; 2017 Dec; 39(6):1305-1324. PubMed ID: 28444474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation potential and tolerance response of Typha latifolia L. under citric acid assisted phytoextraction of lead and mercury.
    Amir W; Farid M; Ishaq HK; Farid S; Zubair M; Alharby HF; Bamagoos AA; Rizwan M; Raza N; Hakeem KR; Ali S
    Chemosphere; 2020 Oct; 257():127247. PubMed ID: 32534296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs).
    Wang X; Chen C; Wang J
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7668-7678. PubMed ID: 28124267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.
    Duponnois R; Kisa M; Assigbetse K; Prin Y; Thioulouse J; Issartel M; Moulin P; Lepage M
    Sci Total Environ; 2006 Nov; 370(2-3):391-400. PubMed ID: 16989893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.