BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31733872)

  • 1. Short communication: An inducible CRISPR/dCas9 gene repression system in Lactococcus lactis.
    Xiong ZQ; Wei YY; Kong LH; Song X; Yi HX; Ai LZ
    J Dairy Sci; 2020 Jan; 103(1):161-165. PubMed ID: 31733872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis.
    Berlec A; Škrlec K; Kocjan J; Olenic M; Štrukelj B
    Sci Rep; 2018 Jan; 8(1):1009. PubMed ID: 29343791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.
    van der Els S; James JK; Kleerebezem M; Bron PA
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29453254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-plasmid systems based on CRISPR-Cas9 for gene editing in Lactococcus lactis.
    Song X; Liu L; Liu XX; Xiong ZQ; Xie CL; Wang SJ; Ai LZ
    J Dairy Sci; 2021 Oct; 104(10):10576-10585. PubMed ID: 34275631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a food-grade gene editing system based on CRISPR-Cas9 and its application in Lactococcus lactis NZ9000.
    Zhou Y; Song F; Yang H; Li D; Zhang N; Huang K; He X; Wang M; Tian H; Li C
    Biotechnol Lett; 2023 Aug; 45(8):955-966. PubMed ID: 37266879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Tetracycline-Inducible System for Conditional Gene Expression in Lactococcus lactis and Streptococcus thermophilus.
    Markakiou S; Neves AR; Zeidan AA; Gaspar P
    Microbiol Spectr; 2023 Jun; 11(3):e0066823. PubMed ID: 37191512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Software-based screening for efficient sgRNAs in Lactococcus lactis.
    Wang H; Ai L; Xia Y; Wang G; Xiong Z; Song X
    J Sci Food Agric; 2024 Jan; 104(2):1200-1206. PubMed ID: 37647419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis.
    Millen AM; Horvath P; Boyaval P; Romero DA
    PLoS One; 2012; 7(12):e51663. PubMed ID: 23240053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Effective Method of Lactococcus Genome Editing Using Guide RNA-Directed Transposition.
    Pechenov PY; Garagulya DA; Stanovov DS; Letarov AV
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430465
    [No Abstract]   [Full Text] [Related]  

  • 10. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Broad-Host-Range CRISPRi Toolkit for Silencing Gene Expression in
    Hogan AM; Rahman ASMZ; Lightly TJ; Cardona ST
    ACS Synth Biol; 2019 Oct; 8(10):2372-2384. PubMed ID: 31491085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of a Synthetic Amino Acid into dCas9 Improves Control of Gene Silencing.
    Koopal B; Kruis AJ; Claassens NJ; Nobrega FL; van der Oost J
    ACS Synth Biol; 2019 Feb; 8(2):216-222. PubMed ID: 30668910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Base Editors for Simultaneously Editing Multiple Loci in
    Tian K; Hong X; Guo M; Li Y; Wu H; Caiyin Q; Qiao J
    ACS Synth Biol; 2022 Nov; 11(11):3644-3656. PubMed ID: 36065829
    [No Abstract]   [Full Text] [Related]  

  • 14. Targeted Modification of Epigenetic Marks Using CRISPR/dCas9-SunTag-Based Modular Epigenetic Toolkit.
    Song MK; Kim YS
    Methods Mol Biol; 2024; 2761():81-91. PubMed ID: 38427231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CRISPR Interference Platform for Efficient Genetic Repression in
    Wensing L; Sharma J; Uthayakumar D; Proteau Y; Chavez A; Shapiro RS
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable CRISPR-Cas transcriptional activation in bacteria.
    Ho HI; Fang JR; Cheung J; Wang HH
    Mol Syst Biol; 2020 Jul; 16(7):e9427. PubMed ID: 32657546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-level expression of Lactobacillus beta-galactosidases in Lactococcus lactis using the food-grade, nisin-controlled expression system NICE.
    Maischberger T; Mierau I; Peterbauer CK; Hugenholtz J; Haltrich D
    J Agric Food Chem; 2010 Feb; 58(4):2279-87. PubMed ID: 20092320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of a Conditional Knockout System for
    Ouellette SP
    Front Cell Infect Microbiol; 2018; 8():59. PubMed ID: 29535977
    [No Abstract]   [Full Text] [Related]  

  • 19. CRISPR Interference To Inducibly Repress Gene Expression in Chlamydia trachomatis.
    Ouellette SP; Blay EA; Hatch ND; Fisher-Marvin LA
    Infect Immun; 2021 Jun; 89(7):e0010821. PubMed ID: 33875479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
    Thakore PI; D'Ippolito AM; Song L; Safi A; Shivakumar NK; Kabadi AM; Reddy TE; Crawford GE; Gersbach CA
    Nat Methods; 2015 Dec; 12(12):1143-9. PubMed ID: 26501517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.