BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31733872)

  • 21. Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae.
    Deaner M; Mejia J; Alper HS
    ACS Synth Biol; 2017 Oct; 6(10):1931-1943. PubMed ID: 28700213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression.
    Simões-Barbosa A; Abreu H; Silva Neto A; Gruss A; Langella P
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):61-7. PubMed ID: 14758518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Type IV-A CRISPR-Cas System in
    Crowley VM; Catching A; Taylor HN; Borges AL; Metcalf J; Bondy-Denomy J; Jackson RN
    CRISPR J; 2019 Dec; 2(6):434-440. PubMed ID: 31809194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Robust CRISPR Interference Gene Repression System in Pseudomonas.
    Tan SZ; Reisch CR; Prather KLJ
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311279
    [No Abstract]   [Full Text] [Related]  

  • 25. Enzyme-free targeted DNA demethylation using CRISPR-dCas9-based steric hindrance to identify DNA methylation marks causal to altered gene expression.
    Sapozhnikov DM; Szyf M
    Nat Protoc; 2022 Dec; 17(12):2840-2881. PubMed ID: 36207463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small-Molecule-Mediated Split-Aptamer Assembly for Inducible CRISPR-dCas9 Transcription Activation.
    Liu XH; Li BR; Ying ZM; Tang LJ; Wang F; Jiang JH
    ACS Chem Biol; 2022 Jul; 17(7):1769-1777. PubMed ID: 35700146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D; Koncz M; Kiss A; Rots MG
    Methods Mol Biol; 2018; 1767():395-415. PubMed ID: 29524148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR interference and its applications.
    Ghavami S; Pandi A
    Prog Mol Biol Transl Sci; 2021; 180():123-140. PubMed ID: 33934834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model.
    Li R; Xia X; Wang X; Sun X; Dai Z; Huo D; Zheng H; Xiong H; He A; Wu X
    PLoS Biol; 2020 Nov; 18(11):e3000749. PubMed ID: 33253175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptional Knockdown in Pneumococci Using CRISPR Interference.
    Kjos M
    Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.
    Lawhorn IE; Ferreira JP; Wang CL
    PLoS One; 2014; 9(11):e113232. PubMed ID: 25398078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization and Repurposing of Type I and Type II CRISPR-Cas Systems in Bacteria.
    Hidalgo-Cantabrana C; Goh YJ; Barrangou R
    J Mol Biol; 2019 Jan; 431(1):21-33. PubMed ID: 30261168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating single-particle tracking by photo-activation localization microscopy (sptPALM) in Lactococcus lactis.
    van Beljouw SPB; van der Els S; Martens KJA; Kleerebezem M; Bron PA; Hohlbein J
    Phys Biol; 2019 Mar; 16(3):035001. PubMed ID: 30673632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host Cell Transcriptional Tuning with CRISPR/dCas9 to Mitigate the Effects of Toxin Exposure.
    Metzger D; Miller K; Lyon W; Migliozzi R; Pangburn HA; Saldanha R
    ACS Synth Biol; 2022 Nov; 11(11):3657-3668. PubMed ID: 36318971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation between fibronectin binding protein A expression level at the surface of recombinant lactococcus lactis and plasmid transfer in vitro and in vivo.
    Almeida JF; Mariat D; Azevedo V; Miyoshi A; de Moreno de LeBlanc A; Del Carmen S; Martin R; Langella P; LeBlanc JG; Chatel JM
    BMC Microbiol; 2014 Sep; 14():248. PubMed ID: 25249337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution and Diversity of Nisin Producing LAB in Fermented Food.
    Sharma BR; Jayant D; Rajshee K; Singh Y; Halami PM
    Curr Microbiol; 2021 Sep; 78(9):3430-3438. PubMed ID: 34255153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-level coproduction of the bacteriocins nisin A and lactococcin A by Lactococcus lactis.
    Fernández A; Horn N; Gasson MJ; Dodd HM; Rodríguez JM
    J Dairy Res; 2004 May; 71(2):216-21. PubMed ID: 15190951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies.
    Jensen ED; Ferreira R; Jakočiūnas T; Arsovska D; Zhang J; Ding L; Smith JD; David F; Nielsen J; Jensen MK; Keasling JD
    Microb Cell Fact; 2017 Mar; 16(1):46. PubMed ID: 28298224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.