These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 31734372)
1. Graphene oxide nanosheets versus carbon nanofibers: Enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Rivera-Briso AL; Aachmann FL; Moreno-Manzano V; Serrano-Aroca Á Int J Biol Macromol; 2020 Jan; 143():1000-1008. PubMed ID: 31734372 [TBL] [Abstract][Full Text] [Related]
2. Graphene Oxide versus Carbon Nanofibers in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Films: Degradation in Simulated Intestinal Environments. Rivera-Briso AL; Aparicio-Collado JL; Serra RSI; Serrano-Aroca Á Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054756 [TBL] [Abstract][Full Text] [Related]
3. Natural Biodegradable Poly(3-hydroxybutyrate- Li F; Yu HY; Wang YY; Zhou Y; Zhang H; Yao JM; Abdalkarim SYH; Tam KC J Agric Food Chem; 2019 Oct; 67(39):10954-10967. PubMed ID: 31365242 [TBL] [Abstract][Full Text] [Related]
4. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/collagen/graphene oxide scaffolds for wound coverage. Zine R; Sinha M Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():129-134. PubMed ID: 28866147 [TBL] [Abstract][Full Text] [Related]
5. Epidermal differentiation of stem cells on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers. Sundaramurthi D; Krishnan UM; Sethuraman S Ann Biomed Eng; 2014 Dec; 42(12):2589-99. PubMed ID: 25253468 [TBL] [Abstract][Full Text] [Related]
6. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers for skin tissue engineering. Sundaramurthi D; Krishnan UM; Sethuraman S J Biomed Nanotechnol; 2013 Aug; 9(8):1383-92. PubMed ID: 23926805 [TBL] [Abstract][Full Text] [Related]
7. Accelerating and increasing nano-scaled pore formation on electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers. Lyu LX; Huang NP; Yang Y J Biomater Sci Polym Ed; 2016 Aug; 27(11):1155-69. PubMed ID: 27126176 [TBL] [Abstract][Full Text] [Related]
8. Polyhydroxybutyrate-co-hydroxyvalerate copolymer modified graphite oxide based 3D scaffold for tissue engineering application. Pramanik N; Bhattacharya S; Rath T; De J; Adhikary A; Basu RK; Kundu PP Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():534-546. PubMed ID: 30423738 [TBL] [Abstract][Full Text] [Related]
9. Carbon Nanomaterials and LED Irradiation as Antibacterial Strategies against Gram-Positive Multidrug-Resistant Pathogens. Elias L; Taengua R; Frígols B; Salesa B; Serrano-Aroca Á Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31340560 [TBL] [Abstract][Full Text] [Related]
10. Biocompatible, Free-Standing Film Composed of Bacterial Cellulose Nanofibers-Graphene Composite. Jin L; Zeng Z; Kuddannaya S; Wu D; Zhang Y; Wang Z ACS Appl Mater Interfaces; 2016 Jan; 8(1):1011-8. PubMed ID: 26670811 [TBL] [Abstract][Full Text] [Related]
11. Physical and biological properties of alginate/carbon nanofibers hydrogel films. Llorens-Gámez M; Salesa B; Serrano-Aroca Á Int J Biol Macromol; 2020 May; 151():499-507. PubMed ID: 32088232 [TBL] [Abstract][Full Text] [Related]
12. Preparation and study of the antibacterial ability of graphene oxide-catechol hybrid polylactic acid nanofiber mats. Zhang Q; Tu Q; Hickey ME; Xiao J; Gao B; Tian C; Heng P; Jiao Y; Peng T; Wang J Colloids Surf B Biointerfaces; 2018 Dec; 172():496-505. PubMed ID: 30205340 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional, Robust, and Porous PHBV-GO/MXene Composite Membranes with Good Hydrophilicity, Antibacterial Activity, and Platelet Adsorption Performance. Wu Y; Zheng W; Xiao Y; Du B; Zhang X; Wen M; Lai C; Huang Y; Sheng L Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771308 [TBL] [Abstract][Full Text] [Related]
14. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related]
15. Electrospinning of microbial polyester for cell culture. Kwon OH; Lee IS; Ko YG; Meng W; Jung KH; Kang IK; Ito Y Biomed Mater; 2007 Mar; 2(1):S52-8. PubMed ID: 18458420 [TBL] [Abstract][Full Text] [Related]
16. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. Veleirinho B; Coelho DS; Dias PF; Maraschin M; Ribeiro-do-Valle RM; Lopes-da-Silva JA Int J Biol Macromol; 2012 Nov; 51(4):343-50. PubMed ID: 22652216 [TBL] [Abstract][Full Text] [Related]
18. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus. Kuppan P; Sethuraman S; Krishnan UM J Biomater Sci Polym Ed; 2014; 25(6):574-93. PubMed ID: 24502395 [TBL] [Abstract][Full Text] [Related]
19. Novel Poly(l-lactide)/graphene oxide films with improved mechanical flexibility and antibacterial activity. Yang Z; Sun C; Wang L; Chen H; He J; Chen Y J Colloid Interface Sci; 2017 Dec; 507():344-352. PubMed ID: 28803028 [TBL] [Abstract][Full Text] [Related]
20. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Kuppan P; Vasanthan KS; Sundaramurthi D; Krishnan UM; Sethuraman S Biomacromolecules; 2011 Sep; 12(9):3156-65. PubMed ID: 21800891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]