BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31734500)

  • 1. Feasibility of bioleaching of heavy metals from sediment with indigenous bacteria using agricultural sulfur soil conditioners.
    Wu C; Jiang M; Hsieh L; Cai Y; Shen Y; Wang H; Lin Q; Shen C; Hu B; Lou L
    Sci Total Environ; 2020 Feb; 703():134812. PubMed ID: 31734500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of heavy metals from harbor sediment using sulfur-oxidizing microflora acclimated from native sediment and exogenous soil.
    Chang CY; Chen SY; Klipkhayai P; Chiemchaisri C
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6818-6828. PubMed ID: 30635877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sulfur forms on heavy metals bioleaching from contaminated sediments.
    Fang D; Zhao L; Zhou LX; Shan HX
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Jun; 44(7):714-21. PubMed ID: 19412854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring key physicochemical sediment properties influencing bioleaching of heavy metals.
    Wu C; Hu X; Wang H; Lin Q; Shen C; Lou L
    J Hazard Mater; 2023 Mar; 445():130506. PubMed ID: 36495639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sulfur dosage on continuous bioleaching of heavy metals from contaminated sediment.
    Chen SY; Wu JQ; Sung S
    J Hazard Mater; 2022 Feb; 424(Pt A):127257. PubMed ID: 34601403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sulfur dosage and inoculum size on pilot-scale thermophilic bioleaching of heavy metals from sewage sludge.
    Chen SY; Cheng YK
    Chemosphere; 2019 Nov; 234():346-355. PubMed ID: 31228836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration.
    Chen SY; Lin JG
    Water Res; 2004; 38(14-15):3205-14. PubMed ID: 15276736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration.
    Liu YG; Zhou M; Zeng GM; Wang X; Li X; Fan T; Xu WH
    Bioresour Technol; 2008 Jul; 99(10):4124-9. PubMed ID: 17951054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on bioleaching of heavy metals and resource potential from tannery yard sludge.
    Liu H; Yang K; Luo L; Lu Q; Wu Y; Lan M; Luo Y; Liang W
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):38867-38879. PubMed ID: 33745044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning variation of heavy metals in contaminated river sediment via bioleaching: effect of sulfur added to total solids ratio.
    Tsai LJ; Yu KC; Chen SF; Kung PY; Chang CY; Lin CH
    Water Res; 2003 Nov; 37(19):4623-30. PubMed ID: 14568048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of substrate concentration on the bioleaching of heavy metals from sewage sludge.
    Chen YX; Hua YM; Zhang SH
    J Environ Sci (China); 2004; 16(5):788-92. PubMed ID: 15559813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioleaching of heavy metals from pig manure with indigenous sulfur-oxidizing bacteria: effects of sulfur concentration.
    Wei X; Liu D; Liao L; Wang Z; Li W; Huang W
    Heliyon; 2018 Sep; 4(9):e00778. PubMed ID: 30211335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of substrate concentration on bioleaching of metal-contaminated sediment.
    Chen SY; Lin JG
    J Hazard Mater; 2001 Mar; 82(1):77-89. PubMed ID: 11165063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments.
    Fang D; Zhao L; Yang ZQ; Shan HX; Gao Y; Yang Q
    Environ Technol; 2009 Nov; 30(12):1241-8. PubMed ID: 19950466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combination of aerobic digestion and bioleaching for heavy metal removal from excess sludge.
    Zhang X; Li J; Yang W; Chen J; Wang X; Xing D; Dong W; Wang H; Wang J
    Chemosphere; 2022 Mar; 290():133231. PubMed ID: 34902386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums.
    Shi C; Zhu N; Shang R; Kang N; Wu P
    World J Microbiol Biotechnol; 2015 Nov; 31(11):1719-28. PubMed ID: 26271772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of sulfur concentration on bioleaching of heavy metals from industrial waste sludge.
    Lin YH; Juan ML; Huang HL; Tsai HY; Lin PH
    Water Environ Res; 2010 Nov; 82(11):2219-28. PubMed ID: 21141383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.
    Naresh Kumar R; Nagendran R
    J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophilic bioleaching of heavy metals from waste sludge using response surface methodology.
    Chen SY; Chen WH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1094-104. PubMed ID: 23573930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source.
    Wong JW; Xiang L; Gu XY; Zhou LX
    Chemosphere; 2004 Apr; 55(1):101-7. PubMed ID: 14720552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.