These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 31734545)

  • 1. Protoporphyrin IX tracer fluorescence modulation for improved brain tumor cell lines visualization.
    Piffaretti D; Burgio F; Thelen M; Kaelin-Lang A; Paganetti P; Reinert M; D'Angelo ML
    J Photochem Photobiol B; 2019 Dec; 201():111640. PubMed ID: 31734545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrigendum to "Protoporphyrin IX tracer fluorescence modulation for improved brain tumor cell lines visualization".
    Piffaretti D; Burgio F; Thelen M; Kaelin-Lang A; Paganetti P; Reinert M; D'Angelo ML
    J Photochem Photobiol B; 2020 Apr; 205():111828. PubMed ID: 32163836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ABCG2 transporter by lapatinib enhances 5-aminolevulinic acid-mediated protoporphyrin IX fluorescence and photodynamic therapy response in human glioma cell lines.
    Mansi M; Howley R; Chandratre S; Chen B
    Biochem Pharmacol; 2022 Jun; 200():115031. PubMed ID: 35390338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of aminolevulinic acid-mediated protoporphyrin IX fluorescence and enhancement by ABCG2 inhibitors in renal cell carcinoma cells.
    Howley R; Mansi M; Shinde J; Restrepo J; Chen B
    J Photochem Photobiol B; 2020 Oct; 211():112017. PubMed ID: 32919173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods to Measure the Inhibition of ABCG2 Transporter and Ferrochelatase Activity to Enhance Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Tumor Detection and Resection.
    Mansi M; Howley R; Chen B
    Methods Mol Biol; 2022; 2394():823-835. PubMed ID: 35094360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serum-dependent export of protoporphyrin IX by ATP-binding cassette transporter G2 in T24 cells.
    Ogino T; Kobuchi H; Munetomo K; Fujita H; Yamamoto M; Utsumi T; Inoue K; Shuin T; Sasaki J; Inoue M; Utsumi K
    Mol Cell Biochem; 2011 Dec; 358(1-2):297-307. PubMed ID: 21748335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting ABCG2 transporter to enhance 5-aminolevulinic acid for tumor visualization and photodynamic therapy.
    Chandratre S; Olsen J; Howley R; Chen B
    Biochem Pharmacol; 2023 Nov; 217():115851. PubMed ID: 37858868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ABCG2 influence on the efficiency of photodynamic therapy in glioblastoma cells.
    Müller P; Abdel Gaber SA; Zimmermann W; Wittig R; Stepp H
    J Photochem Photobiol B; 2020 Sep; 210():111963. PubMed ID: 32795847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of protoporphyrin IX in medulloblastoma cell lines and sensitivity to subsequent photodynamic treatment.
    Briel-Pump A; Beez T; Ebbert L; Remke M; Weinhold S; Sabel MC; Sorg RV
    J Photochem Photobiol B; 2018 Dec; 189():298-305. PubMed ID: 30445362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial localization of ABC transporter ABCG2 and its function in 5-aminolevulinic acid-mediated protoporphyrin IX accumulation.
    Kobuchi H; Moriya K; Ogino T; Fujita H; Inoue K; Shuin T; Yasuda T; Utsumi K; Utsumi T
    PLoS One; 2012; 7(11):e50082. PubMed ID: 23189181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadherin 13 overexpression as an important factor related to the absence of tumor fluorescence in 5-aminolevulinic acid-guided resection of glioma.
    Suzuki T; Wada S; Eguchi H; Adachi J; Mishima K; Matsutani M; Nishikawa R; Nishiyama M
    J Neurosurg; 2013 Nov; 119(5):1331-9. PubMed ID: 24010971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Cancer-Specific Protoporphyrin IX Fluorescence by Targeting Oncogenic Ras/MEK Pathway.
    Yoshioka E; Chelakkot VS; Licursi M; Rutihinda SG; Som J; Derwish L; King JJ; Pongnopparat T; Mearow K; Larijani M; Dorward AM; Hirasawa K
    Theranostics; 2018; 8(8):2134-2146. PubMed ID: 29721068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of peptide transporter 1 has a positive correlation in protoporphyrin IX accumulation induced by 5-aminolevulinic acid with photodynamic detection of non-small cell lung cancer and metastatic brain tumor specimens originating from non-small cell lung cancer.
    Omoto K; Matsuda R; Nakai Y; Tatsumi Y; Nakazawa T; Tanaka Y; Shida Y; Murakami T; Nishimura F; Nakagawa I; Motoyama Y; Nakamura M; Fujimoto K; Hiroyuki N
    Photodiagnosis Photodyn Ther; 2019 Mar; 25():309-316. PubMed ID: 30639584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Renal Cell Carcinoma Cell Response to the Enhancement of 5-aminolevulinic Acid-mediated Protoporphyrin IX Fluorescence by Iron Chelator Deferoxamine
    Howley R; Mansi M; Shinde J; Restrepo J; Chen B
    Photochem Photobiol; 2023 Mar; 99(2):787-792. PubMed ID: 35857390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of the efficacy of 5-aminolevulinic acid-mediated photodynamic treatment in human oral squamous cell carcinoma HSC-4.
    Yamamoto M; Fujita H; Katase N; Inoue K; Nagatsuka H; Utsumi K; Sasaki J; Ohuchi H
    Acta Med Okayama; 2013; 67(3):153-64. PubMed ID: 23804138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of 5-aminolevulinic acid-based fluorescence detection of side population-defined glioma stem cells by iron chelation.
    Wang W; Tabu K; Hagiya Y; Sugiyama Y; Kokubu Y; Murota Y; Ogura SI; Taga T
    Sci Rep; 2017 Feb; 7():42070. PubMed ID: 28169355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery.
    Valdés PA; Jacobs V; Harris BT; Wilson BC; Leblond F; Paulsen KD; Roberts DW
    J Neurosurg; 2015 Sep; 123(3):771-80. PubMed ID: 26140489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epithelial growth factor receptor expression influences 5-ALA induced glioblastoma fluorescence.
    Fontana AO; Piffaretti D; Marchi F; Burgio F; Faia-Torres AB; Paganetti P; Pinton S; Pieles U; Reinert M
    J Neurooncol; 2017 Jul; 133(3):497-507. PubMed ID: 28500562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound Modulates Fluorescence Strength and ABCG2 mRNA Response to Aminolevulinic Acid in Glioma Cells.
    Higuchi T; Yamaguchi F; Asakura T; Yoshida D; Oishi Y; Morita A
    J Nippon Med Sch; 2021 Jan; 87(6):310-317. PubMed ID: 32238732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning Fiber Endoscope Improves Detection of 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence at the Boundary of Infiltrative Glioma.
    Belykh E; Miller EJ; Hu D; Martirosyan NL; Woolf EC; Scheck AC; Byvaltsev VA; Nakaji P; Nelson LY; Seibel EJ; Preul MC
    World Neurosurg; 2018 May; 113():e51-e69. PubMed ID: 29408716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.