These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31734606)

  • 1. Environmental interaction of antimony and arsenic near busy traffic nodes.
    Dousova B; Lhotka M; Buzek F; Cejkova B; Jackova I; Bednar V; Hajek P
    Sci Total Environ; 2020 Feb; 702():134642. PubMed ID: 31734606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of antimony contamination generated by road traffic - A focus on Sb geochemistry and speciation in stormwater ponds.
    Philippe M; Le Pape P; Resongles E; Landrot G; Freydier R; Bordier L; Baptiste B; Delbes L; Baya C; Casiot C; Ayrault S
    Chemosphere; 2023 Feb; 313():137368. PubMed ID: 36574574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources.
    Iijima A; Sato K; Yano K; Kato M; Kozawa K; Furuta N
    Environ Sci Technol; 2008 Apr; 42(8):2937-42. PubMed ID: 18497147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of "black carbon" on antimony accumulation in traffic-loaded topsoil.
    Doušová B; Buzek F; Machovič V; Lhotka M; Vojtíšek-Lom M
    Sci Total Environ; 2024 Jul; 933():173132. PubMed ID: 38734108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traffic-related distribution of antimony in roadside soils.
    Földi C; Sauermann S; Dohrmann R; Mansfeldt T
    Environ Pollut; 2018 Jun; 237():704-712. PubMed ID: 29129428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of road dust from different sampling sites in northern Taiwan.
    Wang CF; Chang CY; Tsai SF; Chiang HL
    J Air Waste Manag Assoc; 2005 Aug; 55(8):1236-44. PubMed ID: 16187593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimony from brake dust to the combined sewer collection system via road effluent under rainy conditions.
    Ozaki H; Yoshimura K; Asaoka Y; Hayashi S
    Environ Monit Assess; 2021 May; 193(6):369. PubMed ID: 34052915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran.
    Dehghani S; Moore F; Keshavarzi B; Hale BA
    Ecotoxicol Environ Saf; 2017 Feb; 136():92-103. PubMed ID: 27825051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads.
    Yan G; Mao L; Liu S; Mao Y; Ye H; Huang T; Li F; Chen L
    Sci Total Environ; 2018 Aug; 631-632():942-950. PubMed ID: 29728005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources and properties of non-exhaust particulate matter from road traffic: a review.
    Thorpe A; Harrison RM
    Sci Total Environ; 2008 Aug; 400(1-3):270-82. PubMed ID: 18635248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of different environmental matrices to access the extension of metal contamination along highways.
    Zanello S; Melo VF; Nagata N
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5969-5979. PubMed ID: 29236242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of antimony distribution in street dust to urban road traffic conditions.
    Chang X; Yu Y; Li YX
    J Environ Manage; 2021 Oct; 296():113219. PubMed ID: 34246026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile.
    De Gregori I; Fuentes E; Rojas M; Pinochet H; Potin-Gautier M
    J Environ Monit; 2003 Apr; 5(2):287-95. PubMed ID: 12729270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylated arsenic, antimony and tin species in soils.
    Duester L; Diaz-Bone RA; Kösters J; Hirner AV
    J Environ Monit; 2005 Dec; 7(12):1186-93. PubMed ID: 16307070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Land use-related chemical composition of street sediments in Beijing.
    Kuang C; Neumann T; Norra S; Stüben D
    Environ Sci Pollut Res Int; 2004; 11(2):73-83. PubMed ID: 15108854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High levels of antimony in dust from e-waste recycling in southeastern China.
    Bi X; Li Z; Zhuang X; Han Z; Yang W
    Sci Total Environ; 2011 Nov; 409(23):5126-8. PubMed ID: 21907394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The source apportionment, pollution characteristic and mobility of Sb in roadside soils affected by traffic and industrial activities.
    Yan G; Mao L; Jiang B; Chen X; Gao Y; Chen C; Li F; Chen L
    J Hazard Mater; 2020 Feb; 384():121352. PubMed ID: 31629593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead contamination and isotope signatures in the urban environment of Hong Kong.
    Duzgoren-Aydin NS; Li XD; Wong SC
    Environ Int; 2004 Apr; 30(2):209-17. PubMed ID: 14749110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimony leaching release from brake pads: Effect of pH, temperature and organic acids.
    Hu X; He M; Li S
    J Environ Sci (China); 2015 Mar; 29():11-7. PubMed ID: 25766008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution?
    Minguillón MC; Querol X; Baltensperger U; Prévôt AS
    Sci Total Environ; 2012 Jun; 427-428():191-202. PubMed ID: 22572211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.