These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31734873)

  • 1. Counting Kmers for Biological Sequences at Large Scale.
    Ge J; Meng J; Guo N; Wei Y; Balaji P; Feng S
    Interdiscip Sci; 2020 Mar; 12(1):99-108. PubMed ID: 31734873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeat-aware modeling and correction of short read errors.
    Yang X; Aluru S; Dorman KS
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S52. PubMed ID: 21342585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kmerind: A Flexible Parallel Library for K-mer Indexing of Biological Sequences on Distributed Memory Systems.
    Pan T; Flick P; Jain C; Liu Y; Aluru S
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1117-1131. PubMed ID: 28991750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Squeakr: an exact and approximate k-mer counting system.
    Pandey P; Bender MA; Johnson R; Patro R; Berger B
    Bioinformatics; 2018 Feb; 34(4):568-575. PubMed ID: 29444235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general near-exact k-mer counting method with low memory consumption enables de novo assembly of 106× human sequence data in 2.7 hours.
    Shi CH; Yip KY
    Bioinformatics; 2020 Dec; 36(Suppl_2):i625-i633. PubMed ID: 33381843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants.
    Petrini A; Mesiti M; Schubach M; Frasca M; Danis D; Re M; Grossi G; Cappelletti L; Castrignanò T; Robinson PN; Valentini G
    Gigascience; 2020 May; 9(5):. PubMed ID: 32444882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ViraPipe: scalable parallel pipeline for viral metagenome analysis from next generation sequencing reads.
    Maarala AI; Bzhalava Z; Dillner J; Heljanko K; Bzhalava D
    Bioinformatics; 2018 Mar; 34(6):928-935. PubMed ID: 29106455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing performance of GATK workflows using Apache Arrow In-Memory data framework.
    Ahmad T; Ahmed N; Al-Ars Z; Hofstee HP
    BMC Genomics; 2020 Nov; 21(Suppl 10):683. PubMed ID: 33208101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter.
    Jackman SD; Vandervalk BP; Mohamadi H; Chu J; Yeo S; Hammond SA; Jahesh G; Khan H; Coombe L; Warren RL; Birol I
    Genome Res; 2017 May; 27(5):768-777. PubMed ID: 28232478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics applications on Apache Spark.
    Guo R; Zhao Y; Zou Q; Fang X; Peng S
    Gigascience; 2018 Aug; 7(8):. PubMed ID: 30101283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADS-HCSpark: A scalable HaplotypeCaller leveraging adaptive data segmentation to accelerate variant calling on Spark.
    Xiao A; Wu Z; Dong S
    BMC Bioinformatics; 2019 Feb; 20(1):76. PubMed ID: 30764760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data.
    Abuín JM; Pichel JC; Pena TF; Amigo J
    PLoS One; 2016; 11(5):e0155461. PubMed ID: 27182962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. deGSM: Memory Scalable Construction Of Large Scale de Bruijn Graph.
    Guo H; Fu Y; Gao Y; Li J; Wang Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2157-2166. PubMed ID: 31056509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sealer: a scalable gap-closing application for finishing draft genomes.
    Paulino D; Warren RL; Vandervalk BP; Raymond A; Jackman SD; Birol I
    BMC Bioinformatics; 2015 Jul; 16(1):230. PubMed ID: 26209068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Strategies for Scalable Genomics Analysis.
    Shi L; Wang Z
    Genes (Basel); 2019 Dec; 10(12):. PubMed ID: 31817630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient counting of k-mers in DNA sequences using a bloom filter.
    Melsted P; Pritchard JK
    BMC Bioinformatics; 2011 Aug; 12():333. PubMed ID: 21831268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework.
    Mushtaq H; Ahmed N; Al-Ars Z
    PLoS One; 2019; 14(12):e0224784. PubMed ID: 31805063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cl-dash: rapid configuration and deployment of Hadoop clusters for bioinformatics research in the cloud.
    Hodor P; Chawla A; Clark A; Neal L
    Bioinformatics; 2016 Jan; 32(2):301-3. PubMed ID: 26428290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel workflow manager for non-parallel bioinformatic applications to solve large-scale biological problems on a supercomputer.
    Suplatov D; Popova N; Zhumatiy S; Voevodin V; Švedas V
    J Bioinform Comput Biol; 2016 Apr; 14(2):1641008. PubMed ID: 27122320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.