These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31734873)

  • 21. Parallel workflow manager for non-parallel bioinformatic applications to solve large-scale biological problems on a supercomputer.
    Suplatov D; Popova N; Zhumatiy S; Voevodin V; Švedas V
    J Bioinform Comput Biol; 2016 Apr; 14(2):1641008. PubMed ID: 27122320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ntCard: a streaming algorithm for cardinality estimation in genomics data.
    Mohamadi H; Khan H; Birol I
    Bioinformatics; 2017 May; 33(9):1324-1330. PubMed ID: 28453674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A benchmark study of k-mer counting methods for high-throughput sequencing.
    Manekar SC; Sathe SR
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30346548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. QuorUM: An Error Corrector for Illumina Reads.
    Marçais G; Yorke JA; Zimin A
    PLoS One; 2015; 10(6):e0130821. PubMed ID: 26083032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Hybrid Parallel Strategy Based on String Graph Theory to Improve De Novo DNA Assembly on the TianHe-2 Supercomputer.
    Zhang F; Liao X; Peng S; Cui Y; Wang B; Zhu X; Liu J
    Interdiscip Sci; 2016 Jun; 8(2):169-176. PubMed ID: 26403255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SWAP-Assembler: scalable and efficient genome assembly towards thousands of cores.
    Meng J; Wang B; Wei Y; Feng S; Balaji P
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S2. PubMed ID: 25253533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads.
    Lam KK; LaButti K; Khalak A; Tse D
    Bioinformatics; 2015 Oct; 31(19):3207-9. PubMed ID: 26040454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scaling up genome annotation using MAKER and work queue.
    Thrasher A; Musgrave Z; Kachmarck B; Thain D; Emrich S
    Int J Bioinform Res Appl; 2014; 10(4-5):447-60. PubMed ID: 24989862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turtle: identifying frequent k-mers with cache-efficient algorithms.
    Roy RS; Bhattacharya D; Schliep A
    Bioinformatics; 2014 Jul; 30(14):1950-7. PubMed ID: 24618471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative analysis of parallel computing approaches for genome assembly.
    Ahmed M; Ahmad I; Khan SU
    Interdiscip Sci; 2011 Mar; 3(1):57-63. PubMed ID: 21369889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational Performance Assessment of k-mer Counting Algorithms.
    Pérez N; Gutierrez M; Vera N
    J Comput Biol; 2016 Apr; 23(4):248-55. PubMed ID: 26982880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EPGA2: memory-efficient de novo assembler.
    Luo J; Wang J; Li W; Zhang Z; Wu FX; Li M; Pan Y
    Bioinformatics; 2015 Dec; 31(24):3988-90. PubMed ID: 26315905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale parallel genome assembler over cloud computing environment.
    Das AK; Koppa PK; Goswami S; Platania R; Park SJ
    J Bioinform Comput Biol; 2017 Jun; 15(3):1740003. PubMed ID: 28610458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colib'read on galaxy: a tools suite dedicated to biological information extraction from raw NGS reads.
    Le Bras Y; Collin O; Monjeaud C; Lacroix V; Rivals É; Lemaitre C; Miele V; Sacomoto G; Marchet C; Cazaux B; Zine El Aabidine A; Salmela L; Alves-Carvalho S; Andrieux A; Uricaru R; Peterlongo P
    Gigascience; 2016; 5():9. PubMed ID: 26870323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads.
    Xiao CL; Chen Y; Xie SQ; Chen KN; Wang Y; Han Y; Luo F; Xie Z
    Nat Methods; 2017 Nov; 14(11):1072-1074. PubMed ID: 28945707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SeQuiLa-cov: A fast and scalable library for depth of coverage calculations.
    Wiewiórka M; Szmurło A; Kuśmirek W; Gambin T
    Gigascience; 2019 Aug; 8(8):. PubMed ID: 31378808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pblat: a multithread blat algorithm speeding up aligning sequences to genomes.
    Wang M; Kong L
    BMC Bioinformatics; 2019 Jan; 20(1):28. PubMed ID: 30646844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Apache Spark on genome assembly for scalable overlap-graph reduction.
    Paul AJ; Lawrence D; Song M; Lim SH; Pan C; Ahn TH
    Hum Genomics; 2019 Oct; 13(Suppl 1):48. PubMed ID: 31639049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.
    Lan H; Chan Y; Xu K; Schmidt B; Peng S; Liu W
    BMC Bioinformatics; 2016 Jul; 17 Suppl 9(Suppl 9):267. PubMed ID: 27455061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.