These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 3173492)
1. Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Turner PR; Westwood T; Regen CM; Steinhardt RA Nature; 1988 Oct; 335(6192):735-8. PubMed ID: 3173492 [TBL] [Abstract][Full Text] [Related]
2. Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy. Dowling P; Doran P; Ohlendieck K Biochem J; 2004 Apr; 379(Pt 2):479-88. PubMed ID: 14678011 [TBL] [Abstract][Full Text] [Related]
3. Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue. Head SI Exp Physiol; 2010 May; 95(5):641-56. PubMed ID: 20139167 [TBL] [Abstract][Full Text] [Related]
4. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Franco A; Lansman JB Nature; 1990 Apr; 344(6267):670-3. PubMed ID: 1691450 [TBL] [Abstract][Full Text] [Related]
5. Effect of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca-ATPase, on skeletal muscles from normal and mdx mice. Divet A; Lompré AM; Huchet-Cadiou C Acta Physiol Scand; 2005 Jul; 184(3):173-86. PubMed ID: 15954985 [TBL] [Abstract][Full Text] [Related]
7. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Partridge TA; Morgan JE; Coulton GR; Hoffman EP; Kunkel LM Nature; 1989 Jan; 337(6203):176-9. PubMed ID: 2643055 [TBL] [Abstract][Full Text] [Related]
8. Transient receptor potential cation channels in normal and dystrophic mdx muscle. Krüger J; Kunert-Keil C; Bisping F; Brinkmeier H Neuromuscul Disord; 2008 Jun; 18(6):501-13. PubMed ID: 18504127 [TBL] [Abstract][Full Text] [Related]
9. Distribution of dystrophin and neurofilament protein in muscle spindles of normal and Mdx-dystrophic mice: an immunocytochemical study. Nahirney PC; Ovalle WK Anat Rec; 1993 Apr; 235(4):501-10. PubMed ID: 8465985 [TBL] [Abstract][Full Text] [Related]
10. Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP. Doran P; Martin G; Dowling P; Jockusch H; Ohlendieck K Proteomics; 2006 Aug; 6(16):4610-21. PubMed ID: 16835851 [TBL] [Abstract][Full Text] [Related]
11. Subcellular fractionation of dystrophin to the triads of skeletal muscle. Hoffman EP; Knudson CM; Campbell KP; Kunkel LM Nature; 1987 Dec 24-31; 330(6150):754-8. PubMed ID: 2447503 [TBL] [Abstract][Full Text] [Related]
12. Transient immunosuppression by FK506 permits a sustained high-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscles of adult dystrophic (mdx) mice. Lochmüller H; Petrof BJ; Pari G; Larochelle N; Dodelet V; Wang Q; Allen C; Prescott S; Massie B; Nalbantoglu J; Karpati G Gene Ther; 1996 Aug; 3(8):706-16. PubMed ID: 8854096 [TBL] [Abstract][Full Text] [Related]
13. Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice. Chakkalakal JV; Harrison MA; Carbonetto S; Chin E; Michel RN; Jasmin BJ Hum Mol Genet; 2004 Feb; 13(4):379-88. PubMed ID: 14681302 [TBL] [Abstract][Full Text] [Related]
14. Lipofection of a cDNA plasmid containing the dystrophin gene lowers intracellular free calcium and calcium leak channel activity in mdx myotubes. McCarter GC; Denetclaw WF; Reddy P; Steinhardt RA Gene Ther; 1997 May; 4(5):483-7. PubMed ID: 9274726 [TBL] [Abstract][Full Text] [Related]
16. Proteolysis results in altered leak channel kinetics and elevated free calcium in mdx muscle. Turner PR; Schultz R; Ganguly B; Steinhardt RA J Membr Biol; 1993 May; 133(3):243-51. PubMed ID: 8392585 [TBL] [Abstract][Full Text] [Related]
17. Characterization of ARC, apoptosis repressor interacting with CARD, in normal and dystrophin-deficient skeletal muscle. Abmayr S; Crawford RW; Chamberlain JS Hum Mol Genet; 2004 Jan; 13(2):213-21. PubMed ID: 14645204 [TBL] [Abstract][Full Text] [Related]
18. In situ measurements of calpain activity in isolated muscle fibres from normal and dystrophin-lacking mdx mice. Gailly P; De Backer F; Van Schoor M; Gillis JM J Physiol; 2007 Aug; 582(Pt 3):1261-75. PubMed ID: 17510188 [TBL] [Abstract][Full Text] [Related]
19. Membrane abnormalities and Ca homeostasis in muscles of the mdx mouse, an animal model of the Duchenne muscular dystrophy: a review. Gillis JM Acta Physiol Scand; 1996 Mar; 156(3):397-406. PubMed ID: 8729700 [TBL] [Abstract][Full Text] [Related]
20. Diltiazem and verapamil protect dystrophin-deficient muscle fibers of MDX mice from degeneration: a potential role in calcium buffering and sarcolemmal stability. Matsumura CY; Pertille A; Albuquerque TC; Santo Neto H; Marques MJ Muscle Nerve; 2009 Feb; 39(2):167-76. PubMed ID: 19145649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]