These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31734967)

  • 1. Carbon dioxide production during cardiopulmonary bypass: continuous measure and clinical relevance.
    Celestino C
    Rev Port Cir Cardiotorac Vasc; 2019; 26(3):183-184. PubMed ID: 31734967
    [No Abstract]   [Full Text] [Related]  

  • 2. Carbon dioxide production during cardiopulmonary bypass: pathophysiology, measure and clinical relevance.
    Ranucci M; Carboni G; Cotza M; de Somer F
    Perfusion; 2017 Jan; 32(1):4-12. PubMed ID: 27435871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plateauing oxygen consumption.
    Riley JB
    J Extra Corpor Technol; 2008 Dec; 40(4):279-80. PubMed ID: 19192759
    [No Abstract]   [Full Text] [Related]  

  • 4. Carbon dioxide field flooding techniques for open heart surgery: monitoring and minimizing potential adverse effects.
    Nadolny EM; Svensson LG
    Perfusion; 2000 Mar; 15(2):151-3. PubMed ID: 10789570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygenator exhaust capnography: a method of estimating arterial carbon dioxide tension during cardiopulmonary bypass.
    Zia M; Davies FW; Alston RP; Anaes FC
    J Cardiothorac Vasc Anesth; 1992 Feb; 6(1):42-5. PubMed ID: 1543852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous monitoring of gastric intraluminal carbon dioxide pressure, cardiac output, and end-tidal carbon dioxide pressure in the perioperative period in patients receiving cardiovascular surgery using cardiopulmonary bypass.
    Imai T; Sekiguchi T; Nagai Y; Morimoto T; Nosaka T; Mitaka C; Makita K; Sunamori M
    Crit Care Med; 2002 Jan; 30(1):44-51. PubMed ID: 11902286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benefits of Continuous Monitoring of PCO2 Obtained from a System Applied to Membrane Oxygenator Exhaustion of the Cardiopulmonary Bypass Circuit.
    Filho VADR; Oliveira EL; Scramim JF; Sanga MA; Santos MAD
    Rev Port Cir Cardiotorac Vasc; 2019; 26(3):205-208. PubMed ID: 31734972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen consumption plateauing: a better method of achieving optimum perfusion. 1979.
    Mandl JP; Motley JR
    J Extra Corpor Technol; 2008 Dec; 40(4):281-9. PubMed ID: 19192760
    [No Abstract]   [Full Text] [Related]  

  • 9. Continuous arterial and venous blood gas monitoring during cardiopulmonary bypass.
    Mark JB; FitzGerald D; Fenton T; Fosberg AM; Camann W; Maffeo N; Winkelman J
    J Thorac Cardiovasc Surg; 1991 Sep; 102(3):431-9. PubMed ID: 1908928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct expiratory gas analysis after hypothermic cardiopulmonary bypass.
    Moriyama S; Utoh J; Okamoto K; Tanaka M; Kunitomo R; Hara M; Kitamura N
    Ann Thorac Cardiovasc Surg; 1999 Jun; 5(3):150-5. PubMed ID: 10413760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral vascular reactivity to carbon dioxide before and after cardiopulmonary bypass in children with congenital heart disease.
    Kawaguchi M; Ohsumi H; Ohnishi Y; Nakajima T; Kuro M
    J Thorac Cardiovasc Surg; 1993 Nov; 106(5):823-7. PubMed ID: 8231203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding variation in cardiopulmonary bypass: Statistical Process Control Theory.
    Groom R; Likosky DS; Rutberg H
    J Extra Corpor Technol; 2004 Sep; 36(3):224-30. PubMed ID: 15559738
    [No Abstract]   [Full Text] [Related]  

  • 13. Precise control of PCO2 during cardiopulmonary bypass. 1980.
    Camerlengo LJ; Dearing JP
    J Extra Corpor Technol; 2004 Sep; 36(3):280-3. PubMed ID: 15559749
    [No Abstract]   [Full Text] [Related]  

  • 14. Cerebral carbon dioxide reactivity during nonpulsatile cardiopulmonary bypass.
    Lundar T; Lindegaard KF; Frøysaker T; Grip A; Bergman M; Am-Holen E; Nornes H
    Ann Thorac Surg; 1986 May; 41(5):525-30. PubMed ID: 3085604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring cardiopulmonary resuscitation by end tidal carbon dioxide concentration.
    Nielsen MS; Fitchet A; Saunders DA
    BMJ; 1990 Apr; 300(6730):1012-3. PubMed ID: 2111720
    [No Abstract]   [Full Text] [Related]  

  • 16. Regional cerebrovascular reactivity to carbon dioxide during cardiopulmonary bypass in patients with cerebrovascular disease.
    Gravlee GP; Roy RC; Stump DA; Hudspeth AS; Rogers AT; Prough DS
    J Thorac Cardiovasc Surg; 1990 Jun; 99(6):1022-9. PubMed ID: 2113599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for involvement of hypocapnia and hypoperfusion in aetiology of neurological deficit after cardiopulmonary bypass.
    Nevin M; Colchester AC; Adams S; Pepper JR
    Lancet; 1987 Dec; 2(8574):1493-5. PubMed ID: 2892051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometer measurement of oxygen uptake and carbon dioxide exchange during cardiopulmonary bypass.
    Abbott TR; Goodwin B; Clark G; Rees GJ
    Br J Anaesth; 1980 Jan; 52(1):29-40. PubMed ID: 6769449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen consumption after cardiopulmonary bypass--implications of different measuring methods.
    Oudemans-van Straaten HM; Scheffer GJ; Eysman L; Wildevuur CR
    Intensive Care Med; 1993; 19(2):105-10. PubMed ID: 8486864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic metabolism during cardiopulmonary bypass: predictive value of carbon dioxide derived parameters.
    Ranucci M; Isgrò G; Romitti F; Mele S; Biagioli B; Giomarelli P
    Ann Thorac Surg; 2006 Jun; 81(6):2189-95. PubMed ID: 16731152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.