BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 31735034)

  • 21. Regulating the Configurational Entropy to Improve the Thermoelectric Properties of (GeTe)
    Huang Y; Zhi S; Zhang S; Yao W; Ao W; Zhang C; Liu F; Li J; Hu L
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe)
    Samanta M; Roychowdhury S; Ghatak J; Perumal S; Biswas K
    Chemistry; 2017 Jun; 23(31):7438-7443. PubMed ID: 28436062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing Electronic Quality Factor toward High-Performance Ge
    Li M; Sun Q; Xu SD; Hong M; Lyu WY; Liu JX; Wang Y; Dargusch M; Zou J; Chen ZG
    Adv Mater; 2021 Oct; 33(40):e2102575. PubMed ID: 34397118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultralow Thermal Conductivity, Enhanced Mechanical Stability, and High Thermoelectric Performance in (GeTe)
    Acharyya P; Roychowdhury S; Samanta M; Biswas K
    J Am Chem Soc; 2020 Nov; ():. PubMed ID: 33215495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials.
    Jiang Y; Dong J; Zhuang HL; Yu J; Su B; Li H; Pei J; Sun FH; Zhou M; Hu H; Li JW; Han Z; Zhang BP; Mori T; Li JF
    Nat Commun; 2022 Oct; 13(1):6087. PubMed ID: 36241619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilizing the Optimal Carrier Concentration in Al/Sb-Codoped GeTe for High Thermoelectric Performance.
    Wang X; Xue W; Zhang Z; Li X; Yin L; Chen C; Yu B; Sui J; Cao F; Liu X; Mao J; Wang Y; Lin X; Zhang Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45717-45725. PubMed ID: 34541842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The solid solution series (GeTe)x(LiSbTe2)2 (1 ≤ x ≤ 11) and the thermoelectric properties of (GeTe)11(LiSbTe2)2.
    Schröder T; Schwarzmüller S; Stiewe C; de Boor J; Hölzel M; Oeckler O
    Inorg Chem; 2013 Oct; 52(19):11288-94. PubMed ID: 24093486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing thermoelectric performance by Fermi level tuning and thermal conductivity degradation in (Ge
    Wei PC; Cai CX; Hsing CR; Wei CM; Yu SH; Wu HJ; Chen CL; Wei DH; Nguyen DL; Chou MMC; Chen YY
    Sci Rep; 2019 Jun; 9(1):8616. PubMed ID: 31197195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)
    Samanta M; Biswas K
    J Am Chem Soc; 2017 Jul; 139(27):9382-9391. PubMed ID: 28625055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Thermoelectric Performance in Ge
    Xie L; Liu R; Zhu C; Bu Z; Qiu W; Liu J; Xu F; Pei Y; Bai S; Chen L
    Small; 2021 Jun; 17(25):e2100915. PubMed ID: 34032385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics.
    Li J; Chen Z; Zhang X; Yu H; Wu Z; Xie H; Chen Y; Pei Y
    Adv Sci (Weinh); 2017 Dec; 4(12):1700341. PubMed ID: 29270343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe.
    Nshimyimana E; Su X; Xie H; Liu W; Deng R; Luo T; Yan Y; Tang X
    Sci Bull (Beijing); 2018 Jun; 63(11):717-725. PubMed ID: 36658821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe.
    Xing T; Zhu C; Song Q; Huang H; Xiao J; Ren D; Shi M; Qiu P; Shi X; Xu F; Chen L
    Adv Mater; 2021 Apr; 33(17):e2008773. PubMed ID: 33760288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vacancy and anti-site disorder scattering in AgBiSe
    Böcher F; Culver SP; Peilstöcker J; Weldert KS; Zeier WG
    Dalton Trans; 2017 Mar; 46(12):3906-3914. PubMed ID: 28265625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi
    Li J; Xie Y; Zhang C; Ma K; Liu F; Ao W; Li Y; Zhang C
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20064-20072. PubMed ID: 31091077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Power Factor Enabled by Efficient Manipulation Interaxial Angle for Enhancing Thermoelectrics of GeTe-Cu
    Tan X; Zhang F; Zhu J; Xu F; Li R; He S; Rao X; Ang R
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36763976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dataset of the crystal structures, electrical transport properties, and first-principles electronic structures of GeTe-rich GeTe-Sb
    Oku T; Funashima H; Kawaguchi S; Kubota Y; Kosuga A
    Data Brief; 2021 Dec; 39():107462. PubMed ID: 34703854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superior performance and high service stability for GeTe-based thermoelectric compounds.
    Xing T; Song Q; Qiu P; Zhang Q; Xia X; Liao J; Liu R; Huang H; Yang J; Bai S; Ren D; Shi X; Chen L
    Natl Sci Rev; 2019 Oct; 6(5):944-954. PubMed ID: 34691955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Realizing zT of 2.3 in Ge
    Hong M; Chen ZG; Yang L; Zou YC; Dargusch MS; Wang H; Zou J
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping.
    Wu D; Zhao LD; Hao S; Jiang Q; Zheng F; Doak JW; Wu H; Chi H; Gelbstein Y; Uher C; Wolverton C; Kanatzidis M; He J
    J Am Chem Soc; 2014 Aug; 136(32):11412-9. PubMed ID: 25072797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.