These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 31735272)
1. Biomechanical Effects of Shoe Gear on the Lower Extremity. Spencer S Clin Podiatr Med Surg; 2020 Jan; 37(1):91-99. PubMed ID: 31735272 [TBL] [Abstract][Full Text] [Related]
2. Effects of simulated genu valgum and genu varum on ground reaction forces and subtalar joint function during gait. Van Gheluwe B; Kirby KA; Hagman F J Am Podiatr Med Assoc; 2005; 95(6):531-41. PubMed ID: 16291844 [TBL] [Abstract][Full Text] [Related]
3. An electrodynographic study of foot function in shoes of varying heel heights. Gastwirth BW; O'Brien TD; Nelson RM; Manger DC; Kindig SA J Am Podiatr Med Assoc; 1991 Sep; 81(9):463-72. PubMed ID: 1748961 [TBL] [Abstract][Full Text] [Related]
4. Effect of Different Placement of Heel Rockers on Lower-Limb Joint Biomechanics in Healthy Individuals. Farzadi M; Safaeepour Z; Nabavi H; Cham MB; Mousavi ME J Am Podiatr Med Assoc; 2018 May; 108(3):231-235. PubMed ID: 29932758 [TBL] [Abstract][Full Text] [Related]
5. Effects of foot pronation on the lower limb sagittal plane biomechanics during gait. Resende RA; Pinheiro LSP; Ocarino JM Gait Posture; 2019 Feb; 68():130-135. PubMed ID: 30472525 [TBL] [Abstract][Full Text] [Related]
6. Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers. Chen TL; Wong DW; Xu Z; Tan Q; Wang Y; Luximon A; Zhang M PLoS One; 2018; 13(3):e0193653. PubMed ID: 29561862 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical analysis of running with 25 degrees inverted orthotic devices. Baitch SP; Blake RL; Fineagan PL; Senatore J J Am Podiatr Med Assoc; 1991 Dec; 81(12):647-52. PubMed ID: 1804954 [TBL] [Abstract][Full Text] [Related]
8. Effects of medially wedged insoles on the biomechanics of the lower limbs of runners with excessive foot pronation and foot varus alignment. Braga UM; Mendonça LD; Mascarenhas RO; Alves COA; Filho RGT; Resende RA Gait Posture; 2019 Oct; 74():242-249. PubMed ID: 31574408 [TBL] [Abstract][Full Text] [Related]
9. Ipsilateral and contralateral foot pronation affect lower limb and trunk biomechanics of individuals with knee osteoarthritis during gait. Resende RA; Kirkwood RN; Deluzio KJ; Hassan EA; Fonseca ST Clin Biomech (Bristol); 2016 May; 34():30-7. PubMed ID: 27060435 [TBL] [Abstract][Full Text] [Related]
10. The influence of minimalist footwear and stride length reduction on lower-extremity running mechanics and cumulative loading. Firminger CR; Edwards WB J Sci Med Sport; 2016 Dec; 19(12):975-979. PubMed ID: 27107980 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical implications of the negative heel rocker sole shoe: gait kinematics and kinetics. Myers KA; Long JT; Klein JP; Wertsch JJ; Janisse D; Harris GF Gait Posture; 2006 Nov; 24(3):323-30. PubMed ID: 16300949 [TBL] [Abstract][Full Text] [Related]
12. Effects of shoe heel height on the end-point and joint kinematics of the locomotor system when crossing obstacles of different heights. Chien HL; Lu TW Ergonomics; 2017 Mar; 60(3):410-420. PubMed ID: 27153344 [TBL] [Abstract][Full Text] [Related]
13. Dynamic foot-pressure measurement in the assessment of operatively treated clubfeet. Huber H; Dutoit M J Bone Joint Surg Am; 2004 Jun; 86(6):1203-10. PubMed ID: 15173293 [TBL] [Abstract][Full Text] [Related]
14. Sagittal subtalar and talocrural joint assessment between barefoot and shod walking: A fluoroscopic study. McHenry BD; Kruger KM; Exten EL; Tarima S; Harris GF Gait Posture; 2019 Jul; 72():57-61. PubMed ID: 31151088 [TBL] [Abstract][Full Text] [Related]
15. Walking variations in healthy women wearing high-heeled shoes: Shoe size and heel height effects. Di Sipio E; Piccinini G; Pecchioli C; Germanotta M; Iacovelli C; Simbolotti C; Cruciani A; Padua L Gait Posture; 2018 Jun; 63():195-201. PubMed ID: 29772495 [TBL] [Abstract][Full Text] [Related]
16. Foot pronation is not associated with increased injury risk in novice runners wearing a neutral shoe: a 1-year prospective cohort study. Nielsen RO; Buist I; Parner ET; Nohr EA; Sørensen H; Lind M; Rasmussen S Br J Sports Med; 2014 Mar; 48(6):440-7. PubMed ID: 23766439 [TBL] [Abstract][Full Text] [Related]
17. Biomechanics of the normal and abnormal foot. Kirby KA J Am Podiatr Med Assoc; 2000 Jan; 90(1):30-4. PubMed ID: 10659530 [TBL] [Abstract][Full Text] [Related]
18. Slip initiation in alternative and slip-resistant footwear. Chander H; Wade C; Garner JC; Knight AC Int J Occup Saf Ergon; 2017 Dec; 23(4):558-569. PubMed ID: 27858517 [TBL] [Abstract][Full Text] [Related]
19. The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system. Major MJ; Scham J; Orendurff M Prosthet Orthot Int; 2018 Apr; 42(2):198-207. PubMed ID: 28486847 [TBL] [Abstract][Full Text] [Related]
20. Morphofunctional muscle changes influence on foot stability in multiple sclerosis during gait prediction: The rehabilitation potential. Neamtu MC; Neamtu OM; Marin MI; Rusu L J Back Musculoskelet Rehabil; 2018; 31(3):469-474. PubMed ID: 29171982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]