These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM. Andre G; Brasseur R; Dufrêne YF J Mol Recognit; 2007; 20(6):538-45. PubMed ID: 17891753 [TBL] [Abstract][Full Text] [Related]
43. Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes. Heyse S; Vogel H; Sänger M; Sigrist H Protein Sci; 1995 Dec; 4(12):2532-44. PubMed ID: 8580844 [TBL] [Abstract][Full Text] [Related]
44. Interaction of long-chain n-alcohols with fluid DOPC bilayers: a neutron diffraction study. Petrenko VI; Klacsova M; Beskrovnyy AI; Uhrikova D; Balgavy P Gen Physiol Biophys; 2010 Dec; 29(4):355-61. PubMed ID: 21156998 [TBL] [Abstract][Full Text] [Related]
45. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures. Angelova A; Ionov R; Koch MH; Rapp G Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049 [TBL] [Abstract][Full Text] [Related]
46. Phase behavior of the DOPE + DOPC + alkanol system. Klacsová M; Karlovská J; Uhríková D; Funari SS; Balgavý P Soft Matter; 2014 Aug; 10(31):5842-8. PubMed ID: 24980804 [TBL] [Abstract][Full Text] [Related]
47. Real-time observation of lipoplex formation and interaction with anionic bilayer vesicles. Pantazatos SP; MacDonald RC J Membr Biol; 2003 Jan; 191(2):99-112. PubMed ID: 12533777 [TBL] [Abstract][Full Text] [Related]
48. Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity. Francius G; Dufour S; Deleu M; Paquot M; Mingeot-Leclercq MP; Dufrêne YF Biochim Biophys Acta; 2008 Oct; 1778(10):2058-68. PubMed ID: 18455997 [TBL] [Abstract][Full Text] [Related]
49. Ultrathin spin-coated dioleoylphosphatidylcholine lipid layers in dry conditions: a combined atomic force microscopy and nanomechanical study. Dols-Perez A; Fumagalli L; Simonsen AC; Gomila G Langmuir; 2011 Nov; 27(21):13165-72. PubMed ID: 21936555 [TBL] [Abstract][Full Text] [Related]
50. Interaction of synthetic glycophospholipids with phospholipid bilayer membranes. Park YS; Huang L Biochim Biophys Acta; 1992 Dec; 1112(2):251-8. PubMed ID: 1457456 [TBL] [Abstract][Full Text] [Related]
51. Characterization of the physical properties of model biomembranes at the nanometer scale with the atomic force microscope. Dufrêne YF; Boland T; Schneider JW; Barger WR; Lee GU Faraday Discuss; 1998; (111):79-94; discussion 137-57. PubMed ID: 10822601 [TBL] [Abstract][Full Text] [Related]
52. Mapping of an ankyrin-sensitive, phosphatidylethanolamine/phosphatidylcholine mono- and bi-layer binding site in erythroid beta-spectrin. Hryniewicz-Jankowska A; Bok E; Dubielecka P; Chorzalska A; Diakowski W; Jezierski A; Lisowski M; Sikorski AF Biochem J; 2004 Sep; 382(Pt 2):677-85. PubMed ID: 15171729 [TBL] [Abstract][Full Text] [Related]
53. Effect of membrane composition on surface states of ganglioside GM1/dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine monolayers. Yokoyama S; Ohta Y; Sakai H; Abe M Colloids Surf B Biointerfaces; 2004 Mar; 34(1):65-8. PubMed ID: 15261092 [TBL] [Abstract][Full Text] [Related]
54. Role of nanomechanical properties in the tribological performance of phospholipid biomimetic surfaces. Trunfio-Sfarghiu AM; Berthier Y; Meurisse MH; Rieu JP Langmuir; 2008 Aug; 24(16):8765-71. PubMed ID: 18620439 [TBL] [Abstract][Full Text] [Related]
55. Effect of phospholipid bilayer phase asymmetry on phospholipase d reaction-induced vesicle rupture. Park JW J Membr Biol; 2011 Nov; 244(2):55-9. PubMed ID: 21984187 [TBL] [Abstract][Full Text] [Related]
56. Quantitation of lateral stress in lipid layer containing nonbilayer phase preferring lipids by frequency-domain fluorescence spectroscopy. Chen SY; Cheng KH; Van der Meer BW Biochemistry; 1992 Apr; 31(15):3759-68. PubMed ID: 1567830 [TBL] [Abstract][Full Text] [Related]
57. Effect of Supporting Polyelectrolyte Multilayers and Deposition Conditions on the Formation of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine Lipid Bilayers. Wlodek M; Szuwarzynski M; Kolasinska-Sojka M Langmuir; 2015 Sep; 31(38):10484-92. PubMed ID: 26334376 [TBL] [Abstract][Full Text] [Related]
58. Investigation of interaction of Leu-enkephalin with lipid membranes. Liu S; Shibata A; Ueno S; Xu F; Baba Y; Jiang D; Li Y Colloids Surf B Biointerfaces; 2006 Mar; 48(2):148-58. PubMed ID: 16542826 [TBL] [Abstract][Full Text] [Related]
59. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. Balatti GE; Martini MF; Pickholz M J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106 [TBL] [Abstract][Full Text] [Related]
60. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. Gurtovenko AA; Vattulainen I J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]