BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31735579)

  • 1. Adaptations to environmental change: Globin superfamily evolution in Antarctic fishes.
    Daane JM; Giordano D; Coppola D; di Prisco G; Detrich HW; Verde C
    Mar Genomics; 2020 Feb; 49():100724. PubMed ID: 31735579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.
    Schwarze K; Burmester T
    Biochim Biophys Acta; 2013 Sep; 1834(9):1801-12. PubMed ID: 23360762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution.
    di Prisco G; Eastman JT; Giordano D; Parisi E; Verde C
    Gene; 2007 Aug; 398(1-2):143-55. PubMed ID: 17553637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interspecies comparison of neuroglobin, cytoglobin and myoglobin: sequence evolution and candidate regulatory elements.
    Wystub S; Ebner B; Fuchs C; Weich B; Burmester T; Hankeln T
    Cytogenet Genome Res; 2004; 105(1):65-78. PubMed ID: 15218260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of globin expression in Antarctic fish under thermal and hypoxic stress.
    Giordano D; Corti P; Coppola D; Altomonte G; Xue J; Russo R; di Prisco G; Verde C
    Mar Genomics; 2021 Jun; 57():100831. PubMed ID: 33250437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution and Expression of Tissue Globins in Ray-Finned Fishes.
    Gallagher MD; Macqueen DJ
    Genome Biol Evol; 2017 Jan; 9(1):32-47. PubMed ID: 28173090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance.
    Tian R; Losilla M; Lu Y; Yang G; Zakon H
    BMC Evol Biol; 2017 Feb; 17(1):51. PubMed ID: 28193153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Full Globin Repertoire of Turtles Provides Insights into Vertebrate Globin Evolution and Functions.
    Schwarze K; Singh A; Burmester T
    Genome Biol Evol; 2015 Jun; 7(7):1896-913. PubMed ID: 26078264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus.
    Giordano D; Vergara A; Lee HC; Peisach J; Balestrieri M; Mazzarella L; Parisi E; di Prisco G; Verde C
    Gene; 2007 Dec; 406(1-2):58-68. PubMed ID: 17618067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals.
    Roesner A; Fuchs C; Hankeln T; Burmester T
    Mol Biol Evol; 2005 Jan; 22(1):12-20. PubMed ID: 15356282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical characterisation of neuroglobin of the icefish, a natural knockout for hemoglobin and myoglobin. Comparison with human neuroglobin.
    Giordano D; Boron I; Abbruzzetti S; Van Leuven W; Nicoletti FP; Forti F; Bruno S; Cheng CH; Moens L; di Prisco G; Nadra AD; Estrin D; Smulevich G; Dewilde S; Viappiani C; Verde C
    PLoS One; 2012; 7(12):e44508. PubMed ID: 23226490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of thermal adaptation in polar fish.
    Verde C; Parisi E; di Prisco G
    Gene; 2006 Dec; 385():137-45. PubMed ID: 16757135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Duplicated cytoglobin genes in teleost fishes.
    Fuchs C; Luckhardt A; Gerlach F; Burmester T; Hankeln T
    Biochem Biophys Res Commun; 2005 Nov; 337(1):216-23. PubMed ID: 16199220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei).
    Stam WT; Beintema JJ; D'Avino R; Tamburrini M; di Prisco G
    J Mol Evol; 1997 Oct; 45(4):437-45. PubMed ID: 9321422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of polar fish hemoglobin: a phylogenetic analysis of the ancestral amino acid residues linked to the root effect.
    Verde C; Parisi E; di Prisco G
    J Mol Evol; 2003; 57 Suppl 1():S258-67. PubMed ID: 15008423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroglobin and cytoglobin. Fresh blood for the vertebrate globin family.
    Pesce A; Bolognesi M; Bocedi A; Ascenzi P; Dewilde S; Moens L; Hankeln T; Burmester T
    EMBO Rep; 2002 Dec; 3(12):1146-51. PubMed ID: 12475928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene duplication, genome duplication, and the functional diversification of vertebrate globins.
    Storz JF; Opazo JC; Hoffmann FG
    Mol Phylogenet Evol; 2013 Feb; 66(2):469-78. PubMed ID: 22846683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic analysis reveals wide distribution of globin X.
    Dröge J; Makałowski W
    Biol Direct; 2011 Oct; 6():54. PubMed ID: 22004552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes.
    di Prisco G; Cocca E; Parker S; Detrich H
    Gene; 2002 Aug; 295(2):185-91. PubMed ID: 12354652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential loss and retention of cytoglobin, myoglobin, and globin-E during the radiation of vertebrates.
    Hoffmann FG; Opazo JC; Storz JF
    Genome Biol Evol; 2011; 3():588-600. PubMed ID: 21697098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.