These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31735706)

  • 1. [MHC-I epitope presentation prediction based on transfer learning].
    Hu WP; Li YP; Zhang XQ
    Yi Chuan; 2019 Nov; 41(11):1041-1049. PubMed ID: 31735706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system.
    Paul S; Croft NP; Purcell AW; Tscharke DC; Sette A; Nielsen M; Peters B
    PLoS Comput Biol; 2020 May; 16(5):e1007757. PubMed ID: 32453790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INeo-Epp: A Novel T-Cell HLA Class-I Immunogenicity or Neoantigenic Epitope Prediction Method Based on Sequence-Related Amino Acid Features.
    Wang G; Wan H; Jian X; Li Y; Ouyang J; Tan X; Zhao Y; Lin Y; Xie L
    Biomed Res Int; 2020; 2020():5798356. PubMed ID: 32626747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
    Paul S; Karosiene E; Dhanda SK; Jurtz V; Edwards L; Nielsen M; Sette A; Peters B
    Front Immunol; 2018; 9():1795. PubMed ID: 30127785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepHLApan: A Deep Learning Approach for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity.
    Wu J; Wang W; Zhang J; Zhou B; Zhao W; Su Z; Gu X; Wu J; Zhou Z; Chen S
    Front Immunol; 2019; 10():2559. PubMed ID: 31736974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD4+ T-cell epitope prediction using antigen processing constraints.
    Mettu RR; Charles T; Landry SJ
    J Immunol Methods; 2016 May; 432():72-81. PubMed ID: 26891811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IEPAPI: a method for immune epitope prediction by incorporating antigen presentation and immunogenicity.
    Deng J; Zhou X; Zhang P; Cheng W; Liu M; Tian J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37232386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Prediction of the Landscape of T Cell Epitope Immunogenicity in Sequence Space.
    Ogishi M; Yotsuyanagi H
    Front Immunol; 2019; 10():827. PubMed ID: 31057550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robust deep learning workflow to predict CD8 + T-cell epitopes.
    Lee CH; Huh J; Buckley PR; Jang M; Pinho MP; Fernandes RA; Antanaviciute A; Simmons A; Koohy H
    Genome Med; 2023 Sep; 15(1):70. PubMed ID: 37705109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data.
    Reynisson B; Barra C; Kaabinejadian S; Hildebrand WH; Peters B; Nielsen M
    J Proteome Res; 2020 Jun; 19(6):2304-2315. PubMed ID: 32308001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing.
    O'Donnell TJ; Rubinsteyn A; Laserson U
    Cell Syst; 2020 Jul; 11(1):42-48.e7. PubMed ID: 32711842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TLimmuno2: predicting MHC class II antigen immunogenicity through transfer learning.
    Wang G; Wu T; Ning W; Diao K; Sun X; Wang J; Wu C; Chen J; Xu D; Liu XS
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36960769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition.
    Schneidman-Duhovny D; Khuri N; Dong GQ; Winter MB; Shifrut E; Friedman N; Craik CS; Pratt KP; Paz P; Aswad F; Sali A
    PLoS One; 2018; 13(11):e0206654. PubMed ID: 30399156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method.
    Gutiérrez AH; Martin WD; Bailey-Kellogg C; Terry F; Moise L; De Groot AS
    BMC Bioinformatics; 2015 Sep; 16():290. PubMed ID: 26370412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of Neoantigen Identification Through Convolution Neural Network.
    Hao Q; Wei P; Shu Y; Zhang YG; Xu H; Zhao JN
    Front Immunol; 2021; 12():682103. PubMed ID: 34113354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.
    Moghram BA; Nabil E; Badr A
    Comput Methods Programs Biomed; 2018 Jan; 153():161-170. PubMed ID: 29157448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput MHC I Ligand Prediction Using MHCflurry.
    O'Donnell T; Rubinsteyn A
    Methods Mol Biol; 2020; 2120():113-127. PubMed ID: 32124315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved prediction of HLA antigen presentation hotspots: Applications for immunogenicity risk assessment of therapeutic proteins.
    Attermann AS; Barra C; Reynisson B; Schultz HS; Leurs U; Lamberth K; Nielsen M
    Immunology; 2021 Feb; 162(2):208-219. PubMed ID: 33010039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands.
    Reche PA; Reinherz EL
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W138-42. PubMed ID: 15980443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.