These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31736009)

  • 1. Prediction of essential genes in prokaryote based on artificial neural network.
    Xu L; Guo Z; Liu X
    Genes Genomics; 2020 Jan; 42(1):97-106. PubMed ID: 31736009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting essential genes of 37 prokaryotes by combining information-theoretic features.
    Liu X; Luo Y; He T; Ren M; Xu Y
    J Microbiol Methods; 2021 Sep; 188():106297. PubMed ID: 34343487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of key sequence-based features for prediction of essential genes in 31 diverse bacterial species.
    Liu X; Wang BJ; Xu L; Tang HL; Xu GQ
    PLoS One; 2017; 12(3):e0174638. PubMed ID: 28358836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network-based features enable prediction of essential genes across diverse organisms.
    Azhagesan K; Ravindran B; Raman K
    PLoS One; 2018; 13(12):e0208722. PubMed ID: 30543651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepHE: Accurately predicting human essential genes based on deep learning.
    Zhang X; Xiao W; Xiao W
    PLoS Comput Biol; 2020 Sep; 16(9):e1008229. PubMed ID: 32936825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training set selection for the prediction of essential genes.
    Cheng J; Xu Z; Wu W; Zhao L; Li X; Liu Y; Tao S
    PLoS One; 2014; 9(1):e86805. PubMed ID: 24466248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DELEAT: gene essentiality prediction and deletion design for bacterial genome reduction.
    Solana J; Garrote-Sánchez E; Gil R
    BMC Bioinformatics; 2021 Sep; 22(1):444. PubMed ID: 34537011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EPGAT: Gene Essentiality Prediction With Graph Attention Networks.
    Schapke J; Tavares A; Recamonde-Mendoza M
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1615-1626. PubMed ID: 33497339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network Embedding the Protein-Protein Interaction Network for Human Essential Genes Identification.
    Dai W; Chang Q; Peng W; Zhong J; Li Y
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32023848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting essential genes in prokaryotic genomes using a linear method: ZUPLS.
    Song K; Tong T; Wu F
    Integr Biol (Camb); 2014 Apr; 6(4):460-9. PubMed ID: 24603751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information.
    Acencio ML; Lemke N
    BMC Bioinformatics; 2009 Sep; 10():290. PubMed ID: 19758426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting conserved essential genes in bacteria: in silico identification of putative drug targets.
    Duffield M; Cooper I; McAlister E; Bayliss M; Ford D; Oyston P
    Mol Biosyst; 2010 Dec; 6(12):2482-9. PubMed ID: 20949199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated machine-learning model to predict prokaryotic essential genes.
    Deng J
    Methods Mol Biol; 2015; 1279():137-51. PubMed ID: 25636617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the identification of essential genes using targeted genome sequencing and comparative analysis.
    Gustafson AM; Snitkin ES; Parker SC; DeLisi C; Kasif S
    BMC Genomics; 2006 Oct; 7():265. PubMed ID: 17052348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new computational strategy for predicting essential genes.
    Cheng J; Wu W; Zhang Y; Li X; Jiang X; Wei G; Tao S
    BMC Genomics; 2013 Dec; 14():910. PubMed ID: 24359534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances and perspectives in computational prediction of microbial gene essentiality.
    Mobegi FM; Zomer A; de Jonge MI; van Hijum SA
    Brief Funct Genomics; 2017 Mar; 16(2):70-79. PubMed ID: 26857942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential Protein Prediction Based on node2vec and XGBoost.
    Wang N; Zeng M; Li Y; Wu FX; Li M
    J Comput Biol; 2021 Jul; 28(7):687-700. PubMed ID: 34152838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-based information-theoretic features for gene essentiality prediction.
    Nigatu D; Sobetzko P; Yousef M; Henkel W
    BMC Bioinformatics; 2017 Nov; 18(1):473. PubMed ID: 29121868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and identification of essential genes in humans using topological properties and biological information.
    Yang L; Wang J; Wang H; Lv Y; Zuo Y; Li X; Jiang W
    Gene; 2014 Nov; 551(2):138-51. PubMed ID: 25168893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.