These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31736089)

  • 21. Moving faster while preserving accuracy.
    Missenard O; Fernandez L
    Neuroscience; 2011 Dec; 197():233-41. PubMed ID: 21946007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation.
    Mazzoni P; Hristova A; Krakauer JW
    J Neurosci; 2007 Jul; 27(27):7105-16. PubMed ID: 17611263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental trends in speed accuracy trade-off in 6-10-year-old children performing rapid reciprocal and discrete aiming movements.
    Smits-Engelsman BC; Sugden D; Duysens J
    Hum Mov Sci; 2006 Feb; 25(1):37-49. PubMed ID: 16442174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degree of target utilization influences the location of movement endpoint distributions.
    Slifkin AB; Eder JR
    Acta Psychol (Amst); 2017 Mar; 174():89-100. PubMed ID: 28214432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How do illusions constrain goal-directed movement: perceptual and visuomotor influences on speed/accuracy trade-off.
    Skewes JC; Roepstorff A; Frith CD
    Exp Brain Res; 2011 Mar; 209(2):247-55. PubMed ID: 21267551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Speed-accuracy trade-off in the performance of pointing movements in different directions in two-dimensional space.
    Smyrnis N; Evdokimidis I; Constantinidis TS; Kastrinakis G
    Exp Brain Res; 2000 Sep; 134(1):21-31. PubMed ID: 11026722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Movement Speed-Accuracy Trade-Off in Parkinson's Disease.
    Fernandez L; Huys R; Issartel J; Azulay JP; Eusebio A
    Front Neurol; 2018; 9():897. PubMed ID: 30405521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The importance of arousal for variation in working memory capacity and attention control: A latent variable pupillometry study.
    Unsworth N; Robison MK
    J Exp Psychol Learn Mem Cogn; 2017 Dec; 43(12):1962-1987. PubMed ID: 28504528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Respiratory fluctuations in pupil diameter are not maintained during cognitive tasks.
    Nakamura NH; Fukunaga M; Oku Y
    Respir Physiol Neurobiol; 2019 Jul; 265():68-75. PubMed ID: 30021125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. You are measuring the decision to be fast, not inattention: the Sustained Attention to Response Task does not measure sustained attention.
    Dang JS; Figueroa IJ; Helton WS
    Exp Brain Res; 2018 Aug; 236(8):2255-2262. PubMed ID: 29846798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Saying "yes" when you want to say "no" - pupil dilation reflects evidence accumulation in a visual working memory recognition task.
    Lewandowska K; Gągol A; Sikora-Wachowicz B; Marek T; Fąfrowicz M
    Int J Psychophysiol; 2019 May; 139():18-32. PubMed ID: 30851281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linear and logarithmic speed-accuracy trade-offs in reciprocal aiming result from task-specific parameterization of an invariant underlying dynamics.
    Bongers RM; Fernandez L; Bootsma RJ
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1443-57. PubMed ID: 19803648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of vocal demands on pupil dilation.
    Brych M; Händel BF; Riechelmann E; Pieczykolan A; Huestegge L
    Psychophysiology; 2021 Feb; 58(2):e13729. PubMed ID: 33231889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different effects of dopaminergic medication on perceptual decision-making in Parkinson's disease as a function of task difficulty and speed-accuracy instructions.
    Huang YT; Georgiev D; Foltynie T; Limousin P; Speekenbrink M; Jahanshahi M
    Neuropsychologia; 2015 Aug; 75():577-87. PubMed ID: 26184442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced pupil dilation during action preparation in schizophrenia.
    Thakkar KN; Brascamp JW; Ghermezi L; Fifer K; Schall JD; Park S
    Int J Psychophysiol; 2018 Jun; 128():111-118. PubMed ID: 29574231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of mental fatigue on speed-accuracy trade-off.
    Rozand V; Lebon F; Papaxanthis C; Lepers R
    Neuroscience; 2015 Jun; 297():219-30. PubMed ID: 25849613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The aging brain: Movement speed and spatial control.
    Lamb DG; Correa LN; Seider TR; Mosquera DM; Rodriguez JA; Salazar L; Schwartz ZJ; Cohen RA; Falchook AD; Heilman KM
    Brain Cogn; 2016 Nov; 109():105-111. PubMed ID: 27658213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Task specificity and the timing of discrete aiming movements.
    Hsieh TY; Liu YT; Newell KM
    Hum Mov Sci; 2019 Apr; 64():240-251. PubMed ID: 30802800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.