BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31736158)

  • 21. A Low-Cost and High-Capacity SiO
    Xu M; Ma J; Niu G; Yang H; Sun M; Zhao X; Yang T; Chen L; Wang C
    ACS Omega; 2020 Jul; 5(27):16440-16447. PubMed ID: 32685807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wrapping Sb
    Wei Y; Chen J; Wang S; Zhong X; Xiong R; Gan L; Ma Y; Zhai T; Li H
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16264-16275. PubMed ID: 32069397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid Machine Learning-Enabled Potential Energy Model for Atomistic Simulation of Lithium Intercalation into Graphite from Plating to Overlithiation.
    Yang PY; Chiang YH; Pao CW; Chang CC
    J Chem Theory Comput; 2023 Jul; 19(14):4533-4545. PubMed ID: 37140982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning the Kinetics of Zinc-Ion Insertion/Extraction in V
    Liu S; Zhu H; Zhang B; Li G; Zhu H; Ren Y; Geng H; Yang Y; Liu Q; Li CC
    Adv Mater; 2020 Jul; 32(26):e2001113. PubMed ID: 32431024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Challenges and prospects of polyatomic ions' intercalation in the graphite layer for energy storage applications.
    Patil SB; Liao HJ; Wang DY
    Phys Chem Chem Phys; 2020 Nov; 22(43):24842-24855. PubMed ID: 33125020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithium-Ion Intercalation into Graphite in SO
    Kim A; Jung H; Song J; Kim HJ; Jeong G; Kim H
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9054-9061. PubMed ID: 30735029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polarity-Switchable Symmetric Graphite Batteries with High Energy and High Power Densities.
    Wang G; Wang F; Zhang P; Zhang J; Zhang T; Müllen K; Feng X
    Adv Mater; 2018 Sep; 30(39):e1802949. PubMed ID: 30133877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monolayer H-MoS
    Lu B; Liu X; Qu J; Li Z
    Nanoscale Adv; 2022 Sep; 4(18):3756-3763. PubMed ID: 36133320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cation Co-Intercalation with Anions: The Origin of Low Capacities of Graphite Cathodes in Multivalent Electrolytes.
    Yang Y; Wang J; Du X; Jiang H; Du A; Ge X; Li N; Wang H; Zhang Y; Chen Z; Zhao J; Cui G
    J Am Chem Soc; 2023 Jun; 145(22):12093-12104. PubMed ID: 37227815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel Calcium-Ion Battery Based on Dual-Carbon Configuration with High Working Voltage and Long Cycling Life.
    Wu S; Zhang F; Tang Y
    Adv Sci (Weinh); 2018 Aug; 5(8):1701082. PubMed ID: 30128228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena.
    Jache B; Adelhelm P
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10169-73. PubMed ID: 25056756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life.
    Kim J; Raj MR; Lee G
    Nanomicro Lett; 2021 Aug; 13(1):171. PubMed ID: 34370082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L; Zhu Y; Guo C; Zhu X; Liang J; Qian Y
    ChemSusChem; 2014 Jan; 7(1):87-91. PubMed ID: 24339264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible and Binder-Free Electrodes of Sb/rGO and Na3V2(PO4)3/rGO Nanocomposites for Sodium-Ion Batteries.
    Zhang W; Liu Y; Chen C; Li Z; Huang Y; Hu X
    Small; 2015 Aug; 11(31):3822-9. PubMed ID: 25925888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A High-Nickel Layered Double Hydroxides Cathode Boosting the Rate Capability for Chloride Ion Batteries with Ultralong Cycling Life.
    Song Z; Yin Q; Yang S; Miao Y; Wu Y; Li YZ; Ren Y; Sui Y; Qi J; Han J
    Small; 2023 Oct; 19(43):e2302896. PubMed ID: 37376841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries.
    Kim H; Yoon G; Lim K; Kang K
    Chem Commun (Camb); 2016 Oct; 52(85):12618-12621. PubMed ID: 27709171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries.
    Weng S; Yang G; Zhang S; Liu X; Zhang X; Liu Z; Cao M; Ateş MN; Li Y; Chen L; Wang Z; Wang X
    Nanomicro Lett; 2023 Sep; 15(1):215. PubMed ID: 37737445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Low-Cost SiO
    Sun M; Ma J; Xu M; Yang H; Zhang J; Wang C
    ACS Omega; 2022 May; 7(17):15123-15131. PubMed ID: 35572758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.